pcr反应taq酶的作用(pcr高保真酶和普通taq酶)
pcr高保真酶和普通taq酶
这得看你PCR扩增的时候用的是什么酶,一般rTaq酶扩增出来的片段都是粘性末端。
但高保真Taq酶可以扩出平末端。你可以问卖试剂的人具体的rTaq酶名称。
pcr为什么用taq酶
原因:
1、相对于PCR体系中的组分,Taq酶相对不稳定,所以最后加Taq酶混匀后上机;
2、每个反应的Taq酶使用量较小,一般先加多的成分,比如Buffer、水等;
pcr技术taq酶
引物一般20~25nt
产物在500~1000nt之间
PCR的产物一定是DNA。
通俗的说,产物都是双链DNA,始于上游引物,终于下游引物。但如果很严谨的来说,还有不到1%的产物是带有3'单链尾巴的双链DNA以及一些没来得及复性的单链DNA,不过通常实验中我们忽略这些。你可以仔细想一下PCR的原理,特别是开始的3个循环。
产物不会是RNA,首先我们PCR时用的Taq酶是一种DNA聚合酶;其次,PCR是一种体外的DNA扩增方法,也就是说是人为操控的,我们在实验中只加入脱氧核糖核苷酸(dNTP),因而产物只会是DNA。
pcr体系中taq酶过多有何影响
PCR 反应体系主要由寡核苷酸(引物)、4 种dNTP、Taq DNA 聚合酶、靶序列DNA 和PCR 反应缓冲液体系组成。
设计PCR 引物时的一般原则
(1)引物长度- 一般15~ 30碱基,过短则特异性低; 过长则会引起引物间的退火而影响有
效扩增。
(2) 避免内部二级结构,避免序列内有较长的回文结构,使引物自身不能形成发夹结构。
(3) G/C 和A/T 碱基均匀分布,G/C 含量在45%~ 55% 之间,引物碱基序列尽可能选
择碱基随机分布,避免嘌呤、嘧啶的连续排列。
(4) 要避免两个引物间特别是3' 末端DNA 序列互补以及同一引物自身3' 末端的序列互
补,使它们不能形成引物二聚体或发卡结构。
(5) 引物3' 端碱基一般应与模板严格配对,并且3' 端为G、C 或T 时引发效率较高。
(6) 引物5' 端碱基可不与模板匹配,可添加与模板无关的序列(如限制性内切酶的识别
位点、ATG 起始密码子或启动子序列等)。这些与原初模板并不配对的非互补序列在后续的循
不中将被带到双链DNA 中去,这样反应产物不仅含有目的序列,同时在目的基因两侧又有了
的限制酶切位点,用相应的限制酶切割后即可将PCR 产物定向克隆到载体中。
taq酶保真度
当反应体系的温度回升至72℃时,DNA聚合酶要以目的基因为模板将四种脱氧核糖核苷酸逐个按照碱基互补配对原则连接在引物之后。
由此可知,该DNA聚合酶应该耐高温,而且72℃最好是它的最适温度,可以采用Taq酶,此酶是从水生栖热菌 Thermus Aquaticus ( Taq )中分离出的具有热稳定性的DNA聚合酶。
一般常用的Taq酶可以分为rTaq酶和LTaq酶两类,LTaq酶的保真性更强,耐热性也比rTaq酶好。
PCR高保真酶
pcr反应的保真性一般由taq酶和反应的循环数决定。
一般在pcr反应中包括定性,定量,和pcr产物后续的亚克隆实验。一般定性和定量实验对保真性的要求不高,但是如果pcr产物需要进行后续的亚克隆实验,就需要确保产物的保真性。目前很多试剂厂家都会生产不同保真性的taq酶,由于pcr反应过程中是碱基在酶的作用下延伸,所以总会有几率出错,目前很多高保真性的酶可以在出错的情况下将错误碱基删除以确保保真性。循环数对保真性也有一定的影响,一般在28个循环以内,以保证保真性。
pcr taq酶作用
因为PCR反应中所使用的聚合酶具有末端转移的活性,通常在3'加上A。例如:Taq聚合酶同时具有的末端连接酶的功能,PCR反应时在每条PCR扩增产物的3`端自动添加一个3`-A突出端。只有用经过特殊处理的具有3’-T突出末端的DNA片段才能通过T/A配对进行连接。通过PCR的方法扩增目的基因片段的过程中,由于往往不清楚目的基因的DNA序列,获得的目的片段通常需要通过TA克隆的方法,重组到T-载体中,通过序列测定清楚DNA序列。由于在PCR过程中,使用的DNA聚合酶不同,往往分为2种情况:
(1)使用不同的Taq酶,在PCR扩增循环结束后,加上72℃ 10分钟一个过程,Taq酶可以在扩增产物的3末端加上A,因此PCR产物回收纯化后可以和T载体直接连接。(2)使用高保真的DNA聚合酶,如pfu酶,由于其不能在扩增产物的3末端加上A,得到的DNA序列为钝端,因此,需要在回收纯化后进行加A的过程,通常是以PCR回收产物为模板,加上一定量的普通Taq酶和反应液,加入dATP(或dNTP), 72℃ 10分钟,然后将加A产物直接用于TA连接。
pcr技术中taq酶的作用
PCR是聚合酶链式反应(Polymerase Chain Reaction)的简称,是一种常用的分子生物学技术。PCR过程中如果没有找到最佳的扩增条件将会导致产生许多不确定的、不需要的产物,有时甚至没有目的产物;而在另一个极端,又可能没有扩增到任何产物。PCR反应条件包括:温度、时间和循环次数。
1、温度与时间的设置
基于PCR原理三步骤而设置变性-退火-延伸三个温度点。在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。对于较短靶基因(长度为100~300bp时)可采用二温度点法,除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。
①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。
②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度。对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。引物的复性温度可通过以下公式帮助选择合适的温度:
Tm值(解链温度)=4(G+C)+2(A+T)
复性温度=Tm值-(5~10℃)
在Tm值允许范围内, 选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。复性时间一般为30~60sec,足以使引物与模板之间完全结合。
③延伸温度与时间:Taq DNA聚合酶的生物学活性:
70~80℃ 150核苷酸/S/酶分子
70℃ 60核苷酸/S/酶分子
55℃ 24核苷酸/S/酶分子
高于90℃时, DNA合成几乎不能进行。
PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA片段,延伸时间1min是足够的。3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。延伸进间过长会导致非特异性扩增带的出现。对低浓度模板的扩增,延伸时间要稍长些。
2、循环次数
循环次数决定PCR扩增程度。PCR循环次数主要取决于模板DNA的浓度。一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。
taqdna聚合酶在pcr中的作用
在PCR技术中,引物的作用是为了使脱氧核苷酸加到模板链上,使新链延长,没有引物,DNA聚合酶是不能将单个的脱氧核苷酸加到模板链上的。
而TaqDNA聚合酶是一种耐高温的DNA聚合酶,是从美国黄石国家公园的一个热泉中的一种耐热细菌中提取的,它的作用就是将脱氧核苷酸加到模板上后,将该脱氧核苷酸与原来的脱氧核苷酸间的磷酸二酯键连在一起,使脱氧核苷酸单链向前延伸,最终形成一个新的双链DNA分子。
taq酶浓度低对PCR的影响
PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及,④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。 模板:
①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模板核酸变性不彻底。在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。 酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。需注意的是有时忘加Taq酶或溴乙锭。 引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。④引物设计不合理,如引物长度不够,引物之间形成二聚体等。 Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。 反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul。或100ul,应用多大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul后,再做大体积时,一定要模索条件,否则容易失败。 物理原因:变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一。 靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的。
普通taq酶和高保真酶的区别
1、DND聚合酶——又称DNA依赖的DNA聚合酶
它是以DNA为模板,催化底物dNTP分子聚合形成子代DNA的一类酶。DNA聚合酶根据聚合酶活力特征和外切酶活性特征的不同,有可以分为多种。在IVD领域中比较常见的酶如下:
Taq DNA聚合酶——Taq DNA聚合酶是第一个被发现的热稳定DNA聚合酶,分子量65kD,从Thermus aquaticus中分离出来,是目前科研和分子诊断试剂盒里最为广泛应用的聚合酶。为了更优化PCR反应体系,Taq DNA 聚合酶被进行了一系列的性能提升和优化,其中最为熟知的就是热启动Taq酶.
热启动Taq酶:该酶被进行了化学修饰、抗体修饰或者配体修饰。无论是哪种修饰,其原理都是:在反应体系加热至高温之前,Taq DNA 聚合酶活性被“修饰”抑制,进而抑制低温条件下的非特异性扩增。另外,还有一系列突变体Taq DNA聚合酶被筛选出来以满足耐镁离子、耐盐、高保真等要求。
Bst链置换DNA聚合酶——Bst DNA聚合酶是来源于 Bacillus stearothermophilus的DNAPolymerase I,经基因工程改造去除了其 5’-3’核酸外切酶活性,但保留了 5’-3’ DNA 聚合酶活性和强链置换活性。同时,该酶在扩增速度、产量、耐盐性和热稳定性等方面均有大幅提高,而且增加了dUTP耐受性,非常适合于防污染的等温扩增反应,如 LAMP 等。
由于此次新冠的影响,Bst成为IVD领域内又一个DNA聚合酶宠儿。
除了Bst外,还有其他类似功能的链置换DNA聚合酶,如如Bca best聚合酶、 Klenow聚合酶、phi29DNA聚合酶等。
Tth DNA聚合酶——Tth DNA聚合酶来自Thermus thermophilus HB8,其最有趣的现象是:在Mg2+条件下,Tth DNA聚合酶具有较强的DNA聚合酶活性。在Mn2+条件下,Tth DNA聚合酶具有更强的反转录活性。这一特性使得Tth DNA聚合酶搭配相应的buffer可以同时对DNA模板和RNA模板进行扩增。
2、逆转录酶——又称为RNA依赖的DNA 聚合酶
该酶以RNA为模板,按5'-3'方向合成一条与RNA模板互补的DNA单链,这条DNA单链叫做互补DNA (complementary DNA,CDNA)。最常用的逆转录酶为M-MLV和AMV。
3、RNA聚合酶——一条DNA链或RNA为模板的聚合酶
也称为转录酶。最为常见的是T7 RNA聚合酶,分子量约99kDa。专门催化5'→3'方向的RNA形成过程。目前体外诊断中,SAT技术中会看到RNA 聚合酶的身影。如仁度、中帜的RNA扩增方法中就需要使用RNA聚合酶。
4、蛋白酶K——能够酶解样本中的各类蛋白质的酶
蛋白酶K是一种从白色念珠菌分离出来的强力蛋白溶解酶,具有很高的比活性,在较广的pH范围(4〜12.5)内及高温 (50〜70°C)下均有活性,EDTA等螯合剂或SDS等去垢剂均不能使之失活。用于质粒或基因组DNA、RNA的分离和抽提。在病毒核酸检测中,蛋白酶K是病毒采样液中的重要组分之一,蛋白酶K可以裂解病毒的外壳蛋白并使其失活,同时将病毒基因组释放以便后续进行核酸抽提。
5、UDG酶——高效控制PCR残余污染
尿嘧啶DNA糖基化酶(UDG酶),这种酶也称为尿嘧啶 -N- 糖基化酶或UNG酶。
因PCR是一种极敏感的扩增技术,易受污染的影响。小量的外源 DNA 污染可以与目的模板一块被扩增。卫生部明确规定,凡是用于临床检验的PCR试剂,都应该有UNG酶技术,以防止污染。由于UV照射的去污染作用对500bp以下的片段效果不好,而临床用于检测的PCR扩增片段通常为300bp左右,因此UNG的预防作用日益受到重视和肯定。
UDG酶的作用原理:在PCR产物或引物中用dU代替dT或者。这种dU化的PCR产物与UNG一起孵育,因UDG可裂解尿嘧啶碱基和糖磷酸骨架间的N-糖基键,可除去dU而阻止TaqDNA聚合酶的延伸,从而失去被再扩增的能力。UNG对不含dU的模板无任何影响。UNG可从单或双链DNA中消除尿嘧啶,而对RNA中的尿嘧啶和单一尿嘧啶分子则无任何作用。
热敏性UDG: 除了常规UDG外,现在也开发出热敏型UDG,热敏型尿嘧啶-DNA糖基化酶(UDG)是来源于嗜冷海洋细菌经大肠杆菌表达纯化的的重组蛋白,又称南极热敏UDG,热敏型UDG在50℃ 5min即完全失活。大肠杆菌来源的尿嘧啶-DNA 糖基化酶较为耐热,经95℃10min处理仍会残留有少量的尿嘧啶-DNA 糖基化酶活性,导致含有dU碱基的PCR产物的降解。
6、限制性核酸内切酶——识别并剪切特定的脱氧核苷酸序列
限制性核酸内切酶是可以识别并附着特定的脱氧核苷酸序列,并对每条链中特定部位的两个脱氧核糖核苷酸之间的磷酸二酯键进行切割的一类酶,简称限制酶。
常用的酶,如BsoB I, Hinc II,Nt.BstNBI切刻内切酶。其中,BD公司的链置换扩增术(stranddisplacement amplification,SDA)等温PCR系统中选择的酶需具有切割位点专一性,且对识别位点的化学修饰敏感。新冠疫情中Abbott 的明星产品ID NOW等温PCR系统中,就采用Nt.BstNBI内切酶。
7、解旋酶,helicase——使双链DNA变成单链DNA
利用ATP水解提供的能量来解开双链DNA核苷酸配对形成的氢键,从而形成单链DNA;
常用解旋酶:大肠杆菌的UvrD和T7噬菌体的gp4;大肠杆菌解旋酶II(UvrD),其解链速度是20bp/s,对反应速度有很大的制约性。T7噬菌体的解旋酶gp4解旋酶的解链速度更快,可达400bp/s,可以大大提高反应速度。
目前,Quidel等温PCR系统HAD中采用此酶