naoh在质粒提取中的作用(naoh在质粒提取中的作用是什么)
naoh在质粒提取中的作用是什么
LB培养基是一种应用最广泛和最普通的细菌基础培养基,有时又称为普通培养基。
它含有酵母提取物、蛋白胨和NaCl。其中酵母提取物为微生物提供碳源和能源,磷酸盐、蛋白胨主要提供氮源,而NaCl提供无机盐。在配制固体培养基时还要加入一定量琼脂作凝固剂,通常不被微生物分解利用。尽管该该培养基的名称被广泛解释为Luria-Bertani培养基,然而根据其发明人贝尔塔尼(Giuseppe Bertani)的说法,这个名字来源于英语的lysogeny broth,即溶菌肉汤。
分类:
1,液态培养基
根据《分子克隆实验指南》(J.萨姆布鲁克D.W.拉塞尔著)配制每升培养基,应该在950 ml去离子水中加入:
胰蛋白胨10g
酵母提取物5g
NaCl 10g
摇动容器直至溶质溶解.用5mol/LNaOH调pH至7.0.用去离子水定容至1L.在15psi高压下蒸汽灭菌21min.
培养的菌种一般是经过改造的无法在外界环境单独存活和扩增的工程菌.通过培养工程菌,我们可以表达大量的外源蛋白,也可以拿到带有外源基因的质粒,工程菌的有效扩增是生化分子实验的基础.
LB培养基的配方如下:
胰蛋白胨(Tryptone) 10g/L
酵母提取物(Yeast extract) 5g/L
氯化钠(NaCl) 10g/L
另外根据经验值用NaOH调节该培养基的pH,使其达到7.4(该pH适合使用最广的原核表达菌种E.coli的生长)
2,固态培养基
LB固体培养基1L和液体一样,加15g~20g琼脂粉,一定要在温度降下之前加好抗生素,并且倒好板。
1).配制:100mlLB培养基加入1~1.5g琼脂粉
2).抗生素的加入:高压灭菌后,将融化的LB固体培养基置于55℃的水浴中,待培养基温度降到55℃时(手可触摸)加入抗生素,以免温度过高导致抗生素失效,并充分摇匀。
3).倒板:一般15ml-20ml倒1个板子。培养基倒入培养皿后,打开盖子,在紫外下照10-15分钟。
4).保存:用封口胶封边,并倒置放于4℃保存,一个月内使用。
ph值需要控制在7.4
碱法提取质粒时,NaOH的作用
SDS是一种很强的去污剂,可以把细胞膜中的蛋白质和磷脂抽提出来,从而使细胞内的物质得到释放,而NaOH是强碱,可以让蛋白质、染色体DNA和质粒DNA进行变性;当菌体彻底裂解了以后,再加入酸性醋酸钾,用来中和碱性裂解液,同时变性蛋白质、变性基因组DNA和细胞碎片形成沉淀,但是在上清溶液中,存在正确复性的质粒DNA,通过离心,可以收集上清溶液。后通过试剂盒的核酸吸附材料,来对上清液中的质粒DNA进行回收。
naoh在质粒提取中的作用是什么呢
碱裂解法提取质粒DNA的时候加醋酸铵,利用形成的HAc/Ac-缓冲体系平衡溶液二中NaOH的强碱性,使DNA复性;
另一方面,NH4+与溶液二中的SDS(结合到蛋白质上)结合生成微溶性物质,促使体系中的蛋白质以及蛋白质所连接的基因组DNA的沉降DNA呈负性,加入阳离子NH4+中和电荷,促进DNA在无水乙醇中沉淀。 冰上放置5min左右是为了让质粒DNA复性。
在质粒提取过程中,NaOH和KAc的作用各是什么
LB培养基是一种培养基的名称,生化分子实验中一般用该培养基来预培养菌种,使菌种成倍扩增,达到使用要求.培养的菌种一般是经过改造的无法在外界环境单独存活和扩增的工程菌.通过培养工程菌,我们可以表达大量的外源蛋白,也可以拿到带有外源基因的质粒,工程菌的有效扩增是生化分子实验的基础.LB培养基的配方如下:胰蛋白胨(Tryptone) 10g/L酵母提取物(Yeast extract) 5g/L氯化钠(NaCl) 5g/L另外根据经验值用NaOH调节该培养基的pH,使其达到7.4(该pH适合目前使用最广的原核表达菌种E.coli的生长)
氢氧化钠在质粒提取过程中的主要作用
氢氧化钠可以使DNA水解
氢氧化钠的作用:在碱裂解法中,氢氧化钠的作用原理是使细胞膜由脂双层结构向囊泡化转变,从而使细胞裂解,氢氧化钠的作用既能裂解细胞让细胞内含物释放出来,又是质粒DNA和染色体DNA得以分离的关键。
质粒提取实验中,溶液I,II,III作用
solution1就是提供一个裂解菌体的溶液~有一些蛋白质变性剂去垢剂葡萄糖做调解渗透压的作用~
solution2就是碱性的致使核酸(基因组DNA加质粒DNA)发生变性的溶液~solution3就是用来中和2的碱性的溶液~使得质粒可以复性而基因组DNA则不能~所以经离心就可以把质粒分离开来了~
质粒提取中氯仿的作用
分子克隆技术(华农)实验一 质粒的制备质粒是携带外源基因进入细菌中扩增或表达的主要载体,它在基因操作中具有重要作用。质粒的分离与提取是最常用、最基本的实验技术。质粒的提取方法很多,大多包括3个主要步骤:细菌的培养、细菌的收集和裂解、质粒DNA的分离和纯化。本实验以碱裂解法为例,介绍质粒的抽提过程。实验目的:掌握碱裂解法抽提质粒的原理、步骤及各试剂的作用。实验材料:含有质粒pUC18载体的大肠杆菌菌液,克隆有水稻外源片段的BAC的大肠杆菌菌液。 实验原理:在pH 12.0 ~ 12.6碱性环境中,细菌的线性大分子量染色体DNA变性分开,而共价闭环的质粒DNA虽然变性但仍处于拓扑缠绕状态。将pH调至中性并有高盐存在及低温的条件下,大部分染色体DNA、大分子量的RNA和蛋白质在去污剂SDS的作用下形成沉淀,而质粒DNA仍然为可溶状态。通过离心,可除去大部分细胞碎片、染色体DNA、RNA及蛋白质,质粒DNA尚在上清中,然后用酚、氯仿抽提进一步纯化质粒DNA。实验步骤:
1. 取含有pUC18质粒的大肠杆菌菌液于LA培养基上37℃过夜培养;
2. 用无菌牙签挑取单菌落,接种于含有Amp抗生素的LB培养基中,37℃摇床~250 r/min过夜培养;3. 吸取1.5 ml菌液,12000 g离心2分钟,收集菌体,倒掉菌液;吸取1.5 ml菌液,再次收集菌体,尽量将菌液倒干净;4. 加入300 ml溶液 I振荡打匀,重新悬浮细胞,震荡混匀(注意:应彻底打匀沉淀或碎块); (剧烈)
5. 加入300 ml溶液II,轻柔颠倒混匀,放置至清亮,一般不超过5分钟;6. 加入300 ml溶液III颠倒混匀,放置于冰上10分钟,使杂质充分沉淀;(温和)
7. 12000 g离心10分钟;8. 吸取800 ml上清液(注意:不要吸取到飘浮的杂质)至另一Eppendorf管中,加入2/3体积的异丙醇,室温下放置5分钟;9. 12000 g 常温离心15分钟;
10. 倒尽上清,加75%乙醇浸洗除盐(放置片刻或离心3分钟后倒去上清);11. 室温放置或超净台上风干DNA;12. 加40 ml灭菌超纯水或TE溶解;13. 质粒、BAC的质量检测,于-20℃保存。附注:质粒检测电泳检测:质粒电泳一般有三条带,分别为质粒的超螺旋、开环、线型三种构型吸光值检测:采用分光光度计检测260nm、280nm波长吸光值,若吸光值260nm/280nm的比值介于1.7-1.9之间,说明质粒质量较好,1.8为最佳,低于1.8说明有蛋白质污染,大于1.8说明有RNA污染。实验二 DNA的琼脂糖凝胶电泳带电荷的物质在电场中的趋向运动称为电泳。电泳的种类多,应用非常广泛,它已成为分子生物学技术中分离生物大分子的重要手段。琼脂糖凝胶电泳由于其操作简单、快速、灵敏等优点,已成为分离和鉴定核酸的常用方法。实验目的:掌握琼脂糖凝胶电泳的原理,学习琼脂糖凝胶电泳的操作。实验材料:质粒DNA、BAC、植物总DNA
naoh在质粒提取中的作用是什么意思
分离质粒时,可以将质粒去得很干净。方法为:先用TE之类的试剂将菌液悬浮起来,再用NaOH和SDS将菌液裂解(起裂解作用的主要是NaOH,但此时,SDS可以与蛋白很好的结合)。第三步,加入酸中合第二步中的碱,并且将SDS沉淀下来,同时,SDS和蛋白也一起沉淀下来,而基因组上面有很多的蛋白,这样基因组就一起沉淀下来,上清只有质粒了。上清的质粒用乙醇沉淀,这样得到的质粒基本没有基因组。而分离基因组时,一般也是用SDS裂解(想对于碱裂解,SDS比较温和)。同时还用蛋白酶K处理,将基因组上的蛋白降解掉,这样就得到了基因组DNA。再用乙醇沉淀,去掉其他的东东。如果菌中含有质粒,质粒也一起提出来,无法去掉。至于后来的试剂盒,如柱式,前其原理一样,不过最后一步纯度是用柱子的方法。條萊垍頭
主要是在分离过程中起中和ph的作用垍頭條萊
dna经过碱裂解(naoh)后,染色体dna氢键断裂,双螺旋解开,质粒dna氢键断裂,互补链不完全分离,再经过乙酸中和后成中性后者复性离心就可以达到分离的效果垍頭條萊
质粒DNA提取中SDS和NaOH作用
Kac是碱裂解法提取质粒dna的时候用的溶液,一方面利用hac/ac-缓冲体系平衡溶液二中naoh的强碱性,使dna复性;
另一方面,k+与溶液二中的sds(结合到蛋白质上)结合生成微溶性物质,促使体系中的蛋白质以及蛋白质所连接的基因组dna的沉降。
碱法抽提质粒时,NaOH的作用是什么?
氮氧化物主要来源于自然界和人类的活动。
自然源主要来自生物圈中氨的氧化、生物质的燃烧、土壤的排出物、闪电的形成物和平流层进入物。人为来源主要指燃料燃烧、工业生产和交通运输等过程排放的NOx。据统计,全世界由于自然界细菌作用生成的NOx,每年约为50×107t。人类活动所产生的NOx每年约5×107t。从数字上可以看出,人类活动产生的氮氧化物仅为自然界的十分之一。氮氧化物的化学转化及归宿。1、NO的主要转化途径。NO在大气中主要发生以下反应: 2NO+O2→2NO2 NO+O3→NO2+O2 NO+HO2→NO2+OH NO+RO2→RO+NO2 NO+NO2+H2O→2HNO2 HNO2+hv→NO+OH 2、NO2的主要转化途径。NO2在大气中主要发生以下反应: NO2+hv→NO+O NO2+OH+M→HNO3+M NO2+RO2+M→RO2NO2(PAN) NO2+RO+M→RONO2 NO2+O3→NO3+O2 NO2+NO3+M→N2O5+M N2O5+H2O→2HNO3 NH3+HNO3→NH4NO3 2NO2+NaCl→NaNO3+NOCl 由上述反应可以看出,NOx的最终归宿是形成硝酸和硝酸盐。大颗粒的硝酸盐可直接沉降到地表和海洋中,小颗粒的硝酸盐被雨水冲刷也沉降到地表和海洋中。国内外治理氮氧化物废气的方法,一般可分为干法和湿法两大类,前者有固体吸附法和催化还原法,后者有液体吸收法和络盐生成吸收法。(一)固体吸附法。固体吸附法治理NOx废气既能较彻底地消除污染,又能将NOx回收利用。固体吸附剂有活性炭、硅胶和各种类型的分子筛。其主要缺点是:操作繁琐,分子筛用量大,能量消耗大。(二)催化还原法。催化还原法处理NO,的原理是在催化剂存在的条件下.利用还原性物质将NO,还原为无害气体。1、非选择性催化还原法。非选择性催化还原法,最早是利用铂族金属作为主要成分的载体催化剂.通过加热反应脱除NOx。此法早在1956年就被用于硝酸工厂尾气脱色,也就是用少量还原剂,使尾气中红棕色的NOx,还原成无色的NO而放空。它并没有真正脱除NOx,只是看不到黄色而已。2、氨选择催化还原法。这种方法具有更多的实际优点,技术成熟,工业化应用多。该方法所用催化剂可以是铂族,也可以是非铂族的载体催化剂。反应温度比非选择催化还原低,还原剂氮只与NOx反应,不与尾气中的氧气反应,这样可节省大量的氨。3、金属碳基催化剂催化还原法。该方法是目前国内较先进的一种以活性炭为载体,碱金属为催化剂,在不太高的燃烧温度下彻底治理NOx的方法。此方法在航天发射场已得到应用,处理效果好。(三)液体吸收法。1、NaOH溶液吸收法。反应方程式: 2NOx十2NaOH→NaNO2+NaNO3+2O NO+ NO2+2NaOH→2Na NO2+H2O该法主要用于处理硝酸生产尾气、硝化反应尾气以及使用硝酸处理金属产生的废气。这类废气中NOx浓度一般在1000-5000PPm之间,有时更高,但排放量并不大。2、尿素—硝酸溶液吸收法。我国某航天发射中心对于加注系统及库房产生的氮氧化物废气,就是采用这种方法处理的。该处理系统经多年使用证明,其处理氮氧化物的效率高,性能稳定。处理气量为250-850m3/h;喷淋吸收液量为2-3m3/h。3、水一硫酸亚铁两段吸收法。氮氧化物废气常采用水吸收处理。由于水吸收NO的效率很低,而FeSO4对NO具有很高的吸收率,生成不稳定的络合物Fe(NO)SO4。其反应方程式:FeSO4+NO→Fe(NO)SO4所以,对于氮氧化物废气采用水一硫酸亚铁两段喷淋吸收法处理,能收到一定的效果。(四)Fe-EDTA-SO32-络合吸收法。固定燃烧装置排放烟道气中的氮氧化物,90%以上的是NO,若用溶液吸收,必须使NO氧化为NO2,吸收效果才好。而用Fe一EDTA络合物吸收NO,则可直接与NO络合,在还原剂存在的条件下,NO被还原成NH(SO3H)2、N2O或N2,达到去除NOx的目的。该方法在国内尚未有报道,国外也仅见日本用于中试装置。(五)燃烧过程中NOx的控制方法。从NOx的成因我们知道:NOx的生成主要与燃烧火焰的温度、燃烧气体中氧的浓度、燃烧气体在高温下的滞留时间及燃料中的含氧量因素有关。因此,能通过燃烧技术控制NOx的生成环境从而抑制NOx的生成。在煤燃烧过程中,生成NOx的途径有三个:1、热力型NOx(ThermalNOx),它是空气中氮气在高温下氧化而生成的NOx;2、燃料型NOx(FueNOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化生成的NOx;3、快速型NOx(PromptNOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx。1、烟气再循环法。控制燃烧过程中热反应型NOx的有效方法是降低燃烧温度和燃烧区的氧含量。降低火焰温度的方法很多,目前使用较多的是烟气再循环的方法。把空气预热器前的一部分烟气与燃烧用的空气混合,通过燃烧器送入炉内。由于温度较低的惰性烟气进入炉内,达到了同时降低炉内温度水平和氧气浓度的目的。烟气再循环法使用不当会引起燃烧不稳定的问题,此外烟气再循环需要加装风机、风道,还需要场地,从而增大了投资,系统较复杂,对原有设备进行改装时常受场地不够的限制。2、全氧燃烧。在空气与燃料的燃烧过程中,占空气79%的氮气对燃烧无益,反而由于大量的氮气被加热排入大气造成大量热损失,最重要的是氮气在高温下与氧气生成的NOx占燃烧中产生NOx大部分。3、分级燃烧。分级燃烧其主要原理是,无论热反应型或燃烧型NOx,燃烧区的氧浓度(即过量空气系数)对NOx的生成量影响很大,当过量空气系数α小于1时,燃烧区处于“富燃料燃烧”状态,对减少NOx的生成量由明显的效果。4、高性能燃烧器的应用。必须大力开发研究适合我国国情的高效低污染燃烧技术,强化高效、防结渣、低NOx排放的高性能燃烧器的开发与应用研究。5、采用流化床燃烧。流化床能够在燃烧过程中有效的控制NOx的产生和排放,是一种“清洁”的燃烧方式,流化床内的燃烧温度可以控制在800-950℃的范围内而保持稳定和高效的燃烧,同时抑制了热反应型NOx的形成,如果同时采用分级燃烧方式送入二次风,又可控制燃料型NOx的产生,在一般情况下NOx的生成量仅为煤粉燃烧的1/3~1/4,可以控制NOx的排放量小于200mg/Nm3~300mg/Nm3。碱法提取质粒溶液一作用
提质粒的目的是去除 RNA,将质粒与细菌基因组 DNA分开,去除蛋白质及其它杂质,以得到相对纯净的质粒。
酶切的目的是对粘末端的DNA分子和载体分子进行切割,以获得相应的粘末端连接。酶切可以是单酶切也可以是双酶切。
扩展资料:
1、提质粒原理
碱变性抽提质粒DNA是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。在pH值高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性。
质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,当以pH4.8的NaAc/KAc高盐缓冲液去调节其pH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
2、酶切基本原理
利用限制性内切酶对DNA上特定序列的识别,来确定切割位点并实现切割,从而获得所需的特定序列。
它可分为三类:Ⅰ类和Ⅲ类酶在同一蛋白质分子中兼有切割和修饰作用且依赖于ATP的存在。Ⅰ类酶结合于识别位点并随机的切割识别位点不远处的DNA,而Ⅲ类酶在识别位点上切割DNA分子,然后从底物上解离。Ⅱ类由两种酶组成: 一种为限制性内切核酸酶,它切割某一特异的核苷酸序列; 另一种为独立的甲基化酶,它修饰同一识别序列。