激光调制管作用(激光调制的三种方法)
激光调制的三种方法
分直接调制、腔内调制和腔外调制三种。 ①直接调制法:外加信号直接控制激光器的泵浦源,如控制半导体激光器的注入电流,从而使激光的某些参量得到调制。 ②腔内调制:腔内调制是通过改变激光器的参数如增益、谐振腔Q值或光程等实现的,主要用于Q开关、腔测空、锁模等技术。腔内调制又分为被动式与主动式两类。 ③腔外调制:只改变腔外光波参数而不影响激光振荡本身的一种调制方法,主要用于光偏转、扫描、隔离、调相、调幅和斩波等方面。腔外调制一般都采用主动方式。
激光的调制方式
一、 开机前的准备工作
1、 检查分页机输送带上清洁无杂物。
2、 检查喷码机喷头高度位置是否合适。
3、 检查喷码机电源指示灯正常工作。
二、 启机及运行中的检查
1、打开喷码机总电源,检查喷码机显示屏是否工作正常,如有异常及时与车间主任联系。
2、打开分页机电源,检查分页机输送带是否工作正常,如有异常及时与车间主任联系。
3、选择喷印信息,按F2会出现选择喷印信息窗口,按上下键选择所要喷印的信息,按ENTER确认。
4、开启喷印,按F1启动喷墨,依次显示喷码机开启,正在热身,运行前检测,约90秒后喷墨启动完成。
5、将要喷印的包装袋放入分页机输送皮带上,包装袋经过喷码机喷头完成喷印。
三、 正常停机
1、点击停止喷墨并清洗,停止喷墨,排空并清洗喷嘴和转接块中墨水。
2、停止喷印。 3、关闭电源。 4、关闭分页机电源。
四、 紧急停机 按下快速停止喷墨关机。
激光调制原理
激光打印机工作原理利用激光束的扫描形成静电潜像。电子照相系统由光导鼓、高压发生器、显影定影装置和输纸机构组成。其作用是将静电潜像变成可见的输出。 激光打印机的印刷原理类似于静电复印,所不同的是静电复印是采用对原稿进行可见光扫描形成潜像,而激光打印机是用计算机输出的信息经过调制后的激光束扫描形成潜像。
什么是激光调制
激光是一种方向性极好的单色相干光。利用激光来有效地传送信息,叫做激光信号。
激光信号系统包括发送和接收两个部分。发送部分主要有激光器、光调制器和光学发射天线。接收部分主要包括光学接收天线、光学滤波器、光探测器。
要传送的信息送到与激光器相连的光调制器中,光调制器将信息调制在激光上,通过光学发射天线发送出去。 在接收端,光学接收天线将激光信号接收下来,送至光探测器,光探测器将激光信号变为电信号,经放大、解调后变为原来的信息。
激光器的调制
电光效应,是将物质置于电场中时,物质的光学性质发生变化的现象。
某些各向同性的透明物质在电场作用下显示出光学各向异性,物质的折射率因外加电场而发生变化的现象为电光效应.电光效应包括泡克耳斯(Pockels)效应和克尔(Kerr)效应。电光效应是指某些各向同性的透明物质在电场作用下显示出光学各向异性的效应。应用 利用电光效应可以制作电光调制器,电光开关,电光光偏转器等,可用于光闸,激光器的Q开关和光波调制,并在高速摄影,光速测量,光通信和激光测距等激光技术中获得了重要应用。当加在晶体上的电场方向与通光方向平行,称为纵向电光调制(也称为纵向运用);当通光方向与所加电场方向相垂直,称为横向电光调制(也称为横向运用).利用电光效应可以实现对光波的振幅调制和位相调制。
激光调制的三种方法有哪些
看看测距仪上有没有UNIT的按键,如果有,那就直接按住不动,然后看一下单位名称有没有变化,有变化,你松手,然后再长时间几秒种按一下,再看一下是不是又变单位了,反复这样,一直变到你想要的单位。 电子测距仪有很多种,如:手持测距仪、激光测距仪、超声波测距仪、红外测距仪,介绍其中的几种;光学测距仪,英文全名“OpticalRangeFinder”。可直译为“射程测量仪”它是采用三角函数概念来测算距离的仪器。其概念虽然在18世纪就已经提出,但无奈当时落后的光学镜头加工技术难以实现。
全站仪是一种集光、机、电为一体的新型测角仪器,与光学经纬仪比较电子经纬仪将光学度盘换为光电扫描度盘,将人工光学测微读数代之以自动记录和显示读数,使测角操作简单化,且可避免读数误差的产生。
电子经纬仪的自动记录、储存、计算功能,以及数据通讯功能,进一步提高了测量作业的自动化程度。 随着电子测角技术的出现, 这一“电子速测仪”的概念又相应地发生了变化,根据测角方法的不同分为半站型电子速测仪和全站型电子速测仪。
半站型电子速测仪是指用光学方法测角的电子速测仪,也有称之为“测距经纬仪”。 目前,世界上最高精度的全站仪:测角精度(一测回方向标准偏差)0.52,测距精度 1mm+1ppm。利用ATR功能,白天和黑夜(无需照明)都可以工作。
全站仪已经达到令人不可致信的角度和距离测量精度,既可人工操作也可自动操作,既可远距离遥控运行也可在机载应用程序控制下使用,可使用在精密工程测量、变形监测、几乎是无容许限差的机械引导控制等应用领域。
激光的产生和调制在一起的调制方式是
类似通信系统中的调制,将激光器调制后输出模拟信号,如果将有效信号加载到模拟信号中,在信号提取时受到的干扰会很小,比如有效信号是直流,在提取时要加滤波器,一般干扰信号为动态变化的信号,这样干扰信号和调制模拟信号就都被滤掉了。
TTL调制就是调制成0v、5v数字信号,模拟调制就是调制成模拟信号,区别就是一个数字一个模拟。激光调制按其调制的性质有
光源调制可以分为直接调制和间接调制两大类。直接调制适用于电流注入型的半导体光源器件(LD和LED),是将传递的信息转变为驱动电流控制光源的发光过程,从而获得输出功率的变化以实现调制响应。调制方式原理简单,实现方便,调制啁啾加剧了光纤色散,高速通信和长距离光传输的不利。
间接调制是利用晶体光电效应,磁光效应,声光效应,和电吸收效应等性质来实现对激光辐射的调制。适用于各种类型激光光源,不受调制影响,啁啾系数小?
激光器直接调制和间接调制
它们的结构简单说就是三明治的夹心结构,中间的夹心是有源区。
二者的结构上是相似的,但是LED没有谐振腔,LD有谐振腔。
LD工作原理是基于受激辐射、LED是基于自发辐射。
LD发射功率较高、光谱较窄、直接调制带宽较宽,而LED发射功率较小、光谱较宽、直接调制
带宽较窄。
激光器的工作存在与普通光源不同之处在于,它同时需要 激光工作物质(这在半导体激光二极管LD中,激光工作物质即为半导体材料), 泵浦(即外加的能量源),谐振腔。
LD和LED 的工作时,其体系结构中都存在半导体工作物质和泵浦源,唯一不同的是,LD在其外层通过自然解理形成一重谐振腔,该谐振腔有一定的发光门限条件(即阈值条件) 当达到这个条件是,激光器才开始粒子数反转受激发光。 当LD的驱动还没达到阈值条件时,它的发光机理其实和LED是没有明显区别的。
常用的激光调制技术
光的偏振(polarization of light)振动方向对于传播方向的不对称性叫做偏振,它是横波区别于其他纵波的一个最明显的标志。光波电矢量振动的空间分布对于光的传播方向失去对称性的现象叫做光的偏振。只有横波才能产生偏振现象,故光的偏振是光的波动性的又一例证。在垂直于传播方向的平面内,包含一切可能方向的横振动,且平均说来任一方向上具有相同的振幅,这种横振动对称于传播方向的光称为自然光(非偏振光)。凡其振动失去这种对称性的光统称偏振光。 1、线偏振光 在光的传播过程中,只包含一种振动,其振动方向始终保持在同一平面内,这种光称为线偏振光(或平面偏振光)。你可以通过一个实验想象这是一种什么景象:你把一根绳子的一头拴在邻居院子里的树上,另一头拿在你手里。再假定绳子是从篱笆的两根竹子的正当中穿过去的。如果你现在拿绳子上下振动,绳子产生的波就会从两根竹子之间通过,并从你的手传到那棵树上。这时,那座篱笆对你的波来说是"透明的"。但是,要是你让绳子左右波动,绳子就会撞在两根竹子上,波就不会通过篱笆了,这时这座篱笆就相当于一个起偏振器件。 2、部分偏振光 光波包含一切可能方向的横振动,但不同方向上的振幅不等,在两个互相垂直的方向上振幅具有最大值和最小值,这种光称为部分偏振光。自然光和部分偏振光实际上是由许多振动方向不同的线偏振光组成。 当光线从空气(严格地说应该是真空)射入介质时,布儒斯特角的正切值等于介质的折射率n。由于介质的折射率是与光波长有关的,对同样的介质,布儒斯特角的大小也是与光波长有关的。以光学玻璃折射率1.4-1.9计算,布儒斯特角大约为54-62度左右。当入射角偏离布儒斯特角时,反射光将是部分偏振光。 3、椭圆偏振光 在光的传播过程中,空间每个点的电矢量均以光线为轴作旋转运动,且电矢量端点描出一个椭圆轨迹,这种光称为椭圆偏振光。迎着光线方向看,凡电矢量顺时针旋转的称右旋椭圆偏振光,凡逆时针旋转的称左旋椭圆偏振光。椭圆偏振光中的旋转电矢量是由两个频率相同、振动方向互相垂直、有固定相位差的电矢量振动合成的结果。 4、圆偏振光 旋转电矢量端点描出圆轨迹的光称圆偏振光,是椭圆偏振光的特殊情形。在我们的观察时间段中平均后,圆偏振光看上去是与自然光一样的。但是圆偏振光的偏振方向是按一定规律变化的,而自然光的偏振方向变化是随机的,没有规律的。 应用: 1. 电子表的液晶显示用到了偏振光。 两块透振方向相互垂直的偏振片当中插进一个液晶盒,盒内液晶层的上下是透明的电极板,它们刻成了数字笔画的形状。外界的自然光通过第一块偏振片后,成了偏振光。这束光在通过液晶时,如果上下两极板间没有电压,光的偏振方向会被液晶旋转90度(这种性质叫做液晶的旋光性),于是它能通过第二块偏振片。第二块偏振片的下面是反射镜,光线被反射回来,这时液晶盒看起来是透明的。但在上下两个电极间有一定大小的电压时,液晶的性质改变了,旋光性消失,于是光线通不过第二块偏振片,这个电极下的区域变暗,如果电极刻成了数字的笔画的形状,用这种方法就可以显示数字。 偏振镜效果 2. 在摄影镜头前加上偏振镜消除反光。 在拍摄表面光滑的物体,如玻璃器皿、水面、陈列橱柜、油漆表面、塑料表面等,常常会出现耀斑或反光,这是由于光线的偏振而引起的。在拍摄时加用偏振镜,并适当地旋转偏振镜面,能够阻挡这些偏振光,借以消除或减弱这些光滑物体表面的反光或亮斑。要通过取景器一边观察一边转动镜面,以便观察消除偏振光的效果。当观察到被摄物体的反光消失时,既可以停止转动镜面。 3. 摄影时控制天空亮度,使蓝天变暗。 由于蓝天中存在大量的偏振光,所以用偏振镜能够调节天空的亮度,加用偏振镜以后,蓝天变的很暗,突出了蓝天中的白云。偏振镜是灰色的,所以在黑白和彩色摄影中均可以使用。 4. 使用偏振镜看立体电影 在观看立体电影时,观众要戴上一副特制的眼镜,这副眼镜就是一对透振方向互相垂直的偏振片。立体电影是用两个镜头如人眼那样从两个不同方向同时拍摄下景物的像,制成电影胶片。在放映时,通过两个放映机,把用两个摄影机拍下的两组胶片同步放映,使这略有差别的两幅图像重叠在银幕上。这时如果用眼睛直接观看,看到的画面是模糊不清的,要看到立体电影,就要在每架电影机前装一块偏振片,它的作用相当于起偏器。从两架放映机射出的光,通过偏振片后,就成了偏振光.左右两架放映机前的偏振片的偏振化方向互相垂直,因而产生的两束偏振光的偏振方向也互相垂直。这两束偏振光投射到银幕上再反射到观众处,偏振光方向不改变.观众用上述的偏振眼镜观看,每只眼睛只看到相应的偏振光图象,即左眼只能看到左机映出的画面,右眼只能看到右机映出的画面,这样就会像直接观看那样产生立体感觉。这就是立体电影的原理。 当然,实际放映立体电影是用一个镜头,两套图象交替地印在同一电影胶片上,还需要一套复杂的装置。光在晶体中的传播与偏振现象密切相关,利用偏振现象可了解晶体的光学特性,制造用于测量的光学器件,以及提供诸如岩矿鉴定、光测弹性及激光调制等技术手段。 5、生物的生理机能与偏振光 人的眼睛对光的偏振状态是不能分辨的,但某些昆虫的眼睛对偏振却很敏感。比如蜜蜂有五支眼、三支单眼、两支复眼,每个复眼包含有6300个小眼,这些小眼能根据太阳的偏光确定太阳的方位,然后以太阳为定向标来判断方向,所以蜜蜂可以准确无误地把它的同类引到它所找到的花丛。 再如在沙漠中,如果不带罗盘,人是会迷路的,但是沙漠中有一种蚂蚁,它能利用天空中的紫外偏光导航,因而不会迷路。 6、汽车使用偏振片防止夜晚对面车灯晃眼 远光灯是非常讨厌的,但是利用光的偏振可以解决这个问题。我们可以将汽车灯罩设计成斜方向45°的偏振镜片,这样射出去的光都是有规律的斜向光。汽车驾驶员戴一副夜间眼镜,偏振方向与灯罩偏振方向相同。如此一来,驾驶员只能看到自己汽车射出去的光,而对面汽车射来光的震动方向,正好是与本方向汽车程90°角,那样对面的车灯光线就不会再晃到驾驶员的眼睛。 当然这个设想要实现还是需要很漫长的道路的,首先世界必须制定一个统一的标准,来规定灯罩与眼镜的偏振方向;其次偏振眼镜必然会损失一部分光线,那么驾驶员的视野会受到影响;而且汽车大灯的功率都很大,其一半的能量都被偏振镜片吸收,一定会产生大量的热,对于汽车灯罩的做工,也是一个非常大的考验。
激光调制电路
脉冲发生器就是来产生触发脉冲的,可以是电流或电压触发脉冲,比如有些电力电子器件(晶闸管)需要触发脉冲才能导通。
脉冲发生器其实就是用来发生信号的系统,产生所需要参数的电测试信号仪器。这里主要以自己所使用的Active Technologies的脉冲发生器进行说明。
目前,Active Technologies的脉冲发生器可应用于物理应用、激光调制、探测器、雷达系统、TDR/TDT应用以及半导体测试等等。而我自己主要用于TDR/TDT应用,主要用于产生快速转换的上升时间(70ps)脉冲,连接示波器,用于进行TDR/TDT测试,完成线缆的阻抗、延时和长度的测量。