您当前所在位置:主页 > 中医养生 >

胶体的作用(胶体的作用和用途)

更新:2022-10-22 15:24编辑:bebe归类:中医养生人气:88

胶体的作用和用途

胶粒与胶体的主要区别如下:

一、特性不同

1、胶粒:水中分散颗粒的稳定性;动力稳定性;胶体颗粒的带电现象;胶体颗粒的溶剂化作用。

2、胶体:能发生丁达尔现象(丁达尔效应),产生聚沉,盐析,电泳,布朗运动等现象,渗析作用等性质;胶体的稳定性介于溶液和浊液之间,在一定条件下能稳定存在,属于介稳体系。

二、性质不同

1、胶粒:粒径小于10μm的颗粒,水体中胶体颗粒大小通常为1~100 nm,它们的重力沉速低于10-2cm/s。

2、胶体:是一种较均匀混合物,在胶体中含有两种不同状态的物质,一种分散相,另一种连续相。

三、应用不同

1、胶粒:胶体颗粒作为一类重要的材料在生物医学领域展示出广阔的应用前景。

2、胶体:土壤的保肥作用,土壤里许多物质如粘土腐殖质等常以胶体形式存在;制豆腐、豆浆、牛奶和粥的原理(胶体的聚沉),明矾净水;江河入海口处形成三角洲,其形成原理是海水中的电解质使江河泥沙形成胶体发生聚沉。

体胶的作用是什么

骨胶是一种使用最为广泛的动物类黏结材料。因其外观为珠状也称作珠状骨胶。其特点是:黏结性能好,强度高,水分少,干燥快,黏结定型好,且价格低廉、使用方便,特别适合黏结和糊制精装书封壳,可得到良好的效果。

动物胶的主要成分是 明胶肤蛋白质。其纯度低的一种 称骨胶。骨胶是脆性硬块凝固体。胶原是不溶于水的 蛋白质,经加热等处理后,变成蛋白质的另一和形式叫胶朊,能溶于热水并具有黏结性能。

骨胶的胶膜形成后很坚固,富有弹性:但骨胶不耐水,遇水会使胶层膨胀而失去黏结强度:其 耐腐蚀性也较差,温度过高、湿度过大都会引起变化。

胶体的作用和用途有哪些

金属胶体常用于净水,因为胶体能吸附且金属胶体带正电,能使水中胶体沉淀;铝,铁,亚铁的胶体常用于净水

胶体的好处

胶体之所以具有较大的稳定性,最主要的原因就是胶粒带有电荷,一般同种胶粒带同号的电荷,因而互相排斥,阻止了它们的互相接近,使胶粒很难聚集成较大的粒子而沉降。

此外,吸附层中的电位离子和反离子都能水化,从而在胶粒周围形成一个水化层,阻止了胶粒之间的聚集,阻止胶粒和带相反电荷离子相结合,因而胶体溶液具有动力稳定性。

胶体有哪些重要用途

胶体特性: 1、丁达尔效应:能发生丁达尔现象(丁达尔效应),产生聚沉,盐析,电泳,布朗运动等现象,渗析作用等性质。

2、介稳性:胶体的稳定性介于溶液和浊液之间,在一定条件下能稳定存在,属于介稳体系。3、结构:根据法扬斯规则(能与晶体的组成离子形成不溶物的离子将优先被吸附.优先吸附具有相同成分的离子),胶体粒子是胶粒,胶粒与扩散层在一起组成了胶团,而胶粒又包括胶核与吸附层。4、其他:具有聚沉、盐析、电泳现象、渗析等性质。

胶体的含义

ái lěng shòu dòng

“冷”字基本含义为温度低,与“热”相对,如:冷天、冷藏;引申含义为寂静,不热闹,如冷落、冷寂。

在现代汉语中,“冷”字多用作形容词,如:冷泉、冷翠。

冻的基本含义为液体或含水分的东西遇冷凝结,如:冻结、冻害;引申含义为汤汁凝成的胶体,如:鱼冻;感到寒冷或受到寒冷,如:防冻、冻伤。

在日常使用中,冻常作形容词,表示寒凉,如冻酒。

胶体有什么应用

1.胶体,溶液,浊液都会发生散射,只是溶液的粒子过小不易看出,而浊液的散射比胶体还要强。老办法,激光笔手电筒,但是浊液把光都吸收了,可以稀释了再实验。

2.溶液均一稳定,而浊液不稳定,浊液经过静置或者离心处理就会有物质沉淀或上浮,可以用这种方法。

3.浊液拥有一部分胶体的性质,只是不稳定,比如U型管通电产生电泳现象。

4.还可以用显微镜观察,浊液的布朗运动一眼就能看出来,而溶液的粒子过小就看不出这种现象。

5.如果你有电子显微镜或者隧道扫描显微镜,那么更好,粒子直径<1nm的是溶液,离子直径>400nm是浊液,这样绝对不会错

胶体的用途与性质

土壤胶体对土壤性质的影响主要表现在:

①土壤胶体含量影响土壤的保水保肥能力和耕性。胶体含量低的砂性土易于耕作,但不利于保水保肥;胶体含量高的粘性土保水保肥能力强,但透气性差,耕作困难;只有胶体含量适中的壤质土,才既有良好的耕性又有较好的保水保肥能力,且适耕期长,宜种作物多。在农业生产中,常用增施有机肥料或客土的方法来调节粘性土和砂性土的不良性状。

②以带负电荷为主的土壤胶体有从土壤溶液中吸附各种阳离子的能力,其吸附量(交换量)的大小取决于胶体物质的类别。这是土壤能保蓄养分和具有缓冲性能的基础。土壤胶体还能吸附进入土壤中的化学农药和重金属离子,降低以至消除化学农药和重金属离子的活性。

③土壤胶体所吸附的阳离子的组成影响土壤的酸碱性。在一般情况下,吸附的阳离子以钙离子为主。如土壤胶体中所吸附的钙离子不断地被钠离子所代换,土壤就趋向碱化,最终形成碱土;如钙离子不断地为铝离子、氢离子所代换,土壤就趋向酸化,形成酸性土壤(如红壤)。碱土和红壤都不利于植物生长。施用石膏或其他能使土壤酸化的物质是为了消除碱土中钠离子的为害,施用石灰则可消除红壤中铝离子和氢离子的为害。

④土壤胶体,尤其是有机无机复合胶体影响土壤团聚体的形成及其稳定性。在土壤中,溶胶在变为凝胶的过程中,常与粉砂、粗砂等土壤颗粒粘结,从而形成各种大小不一的团聚体。团聚体的稳定性与胶体性质有关。可逆胶体形成的团聚体在水中易分散,稳定性差;不可逆胶体形成的团聚体在水中不易分散,稳定性大,称水稳性团聚体。

胶体的作用和用途是什么

胶体因质点很小,强烈的布朗运动使它不致很快沉降,故具有一定的动力学稳定性;另一方面,疏液胶体是高度分散的多相体系,相界面很大,质点之间有强烈的聚结倾向,所以又是热力学不稳定体系。

一旦质点聚结变大,动力学稳定性也随之消失。因此,胶体的聚结稳定性是胶体稳定与否的关键。  疏液胶体,尤其是水溶胶,常因质点带电而稳定。但它对电解质十分敏感,在电解质作用下胶体质点聚结而下沉的现象称为聚沉,聚沉是胶体不稳定的主要表现。在指定条件下使溶胶聚沉所需电解质的最低浓度称为聚沉值,用毫摩尔/升表示。因为判断聚沉的标准与实验条件有关,故聚沉值是一个与实验条件有关的相对数值。疏液胶体的稳定性理论通称DLVO理论。此理论的出发点是:胶体质点间因范德瓦耳斯力而相互吸引,质点在相互接近时又因双电层的重叠而产生排斥作用,胶体的稳定程度取决于上述两种作用的相对大小。DLVO理论计算了各种形状质点之间的范德瓦耳斯吸引能与双电层排斥能随质点间距离的变化。在质点相互接近的过程中,如果在某一距离上质点间的排斥能大于吸引能,胶体将具有一定的稳定性;若在所有距离上吸引皆大于排斥,则质点间的接近必导致聚结,胶体发生聚沉。溶液中的离子浓度或反离子的价数增加时,质点间的范德瓦耳斯力几乎不受影响,但双电层的排斥能却因双电层的压缩而大大降低,因此胶体的稳定性下降,直至发生聚沉。  根据在所有距离上排斥能都小于吸引能的临界条件,自DLVO理论得出: 式中ε为溶液的介电常数;k为玻耳兹曼常数;Z为反离子价数;T为热力学温度;A为哈马克常数,与组成质点的分子间的相互作用参数有关,是物质的特征常数;v为表面电势ψ0的函数: 电势ψ0的函 上式表明聚沉值与反离子价数的六次方成反比,这与从实验总结出的舒尔茨-哈代规则相一致。聚沉值与表面电势的关系也与实验结果大体相符。  关于空间稳定效应,至今尚未形成统一的定量理论。E.L.马克在20世纪50年代初提出,高分子对疏液胶体的稳定作用主要是因为熵效应:质点的接近造成的空间限制使吸附在质点表面上的高分子的构型熵减小,从而使质点间相互作用自由能增加,产生排斥作用。后来的理论发展主要是对高分子构型熵计算方法的改进。另一方面,E.W.费歇尔等提出,质点相互接近时造成高分子吸附层的重叠,这可以看作是两个一定浓度的高分子溶液的混合过程,涉及高分子链段之间和高分子与溶剂之间相互作用的变化。从高分子溶液理论和统计热力学出发,可以分别计算混合过程的熵变与焓变,从而知道吸附层交联时吉布斯函数变化的符号与大小。若吉布斯函数变化为正,则质点互相排斥,高分子吸附层起稳定作用;若吉布斯函数变化为负,则吸附的高分子起絮凝作用。上述两种理论分别适用于高分子吸附层完全不能互相穿透与吸附层可以自由穿透这两种极端情形。实际上当质点因布朗运动而互相碰撞时,吸附层的压缩与穿透多半会同时发生。虽有人试图将两种理论统一起来,但尚未得到满意的结果。  至于高分子絮凝剂的作用机理,除了电性相反的高分子电解质的静电作用之外,更主要的是高分子的“搭桥”作用。若一个高分子长链能同时吸附在两个或更多的质点上,则可能将质点拉在一起而聚沉。这通常发生在高分子浓度很稀时。倘若高分子浓度较高,则倾向于吸附在一个质点上形成保护层,起稳定作用。高分子对疏液胶体的稳定性的影响   在疏液胶体中加入高分子,往往显著提高胶体的稳定性,称为高分子的保护作用。因其与高分子在质点表面上形成阻止质点聚结的吸附层有关,又称为空间稳定作用。工业上常利用高分子的保护作用制备稳定的分散体,尤其是浓分散系或非水分散系,例如油漆。高分子须超过一定浓度才起稳定作用,低于此浓度时,胶体的稳定性往往变差,对电解质更加敏感,此即高分子的敏化作用。某些高分子甚至能直接使胶体聚沉,这称为絮凝作用。作絮凝剂使用的高分子可以是电性与胶体相反的高分子,也可以是不带电,甚至电性与胶体相同的高分子电解质。高分子絮凝剂的用量少、效率高,在合适的条件下还可以进行选择性絮凝,所以广泛用于净水、污水处理、矿泥回收等操作中。最常用的絮凝剂是部分水解的聚丙烯酰胺。影响聚沉的主要因素 反离子的价数   起聚沉作用的主要是电荷与胶体相反的离子(称为反离子)。反离子的价数越高,则聚沉效率越高,聚沉值越低。一价反离子的聚沉值约为 25~150,二价的为0.5~2,三价的为0.01~0.1。聚沉值大致与反离子价数的六次方成反比,这称为舒尔茨-哈代规则。离子大小   同价数的反离子的聚沉值虽然相近,但仍有差别,一价离子聚沉值的差别尤其明显,同价离子聚沉能力的这一次序称为感胶离子序,它和水化离子半径由小至大的次序大致相同,故聚沉能力的差别主要受离子大小的影响。但此规律只适用于小的不相干离子,有机大离子因其与质点之间有较强的范德瓦耳斯力而易被吸附,聚沉值要小得多。同号离子   一般来说,二价或高价负离子对于带负电的胶体有一定的稳定作用,使正离子的聚沉值略有增加;高价正离子对于带正电的胶体也有同样作用。同号大离子对胶体的稳定作用更为明显。不规则聚沉   少量的电解质可使溶胶聚沉,电解质浓度高时,沉淀重又分散;浓度再高时又使溶胶聚沉。这种现象以用高价离子或大离子为聚沉剂时最为显著,叫做不规则聚沉。对于靠静电稳定的疏液胶体,存在一个临界电势ζ0,若质点的电动电势|ζ|<ζ0,则发生聚沉。多数胶体的ζ0在30毫伏左右。只要|ζ|>ζ0,不管其符号如何,皆可达到稳定。高价或大的反离子先是使胶体的 ζ电势降低,发生聚沉;而后由于它在质点表面上的强烈吸附,质点的 ζ电势反号,绝对值增加,溶胶重又稳定;再加入电解质,由于反离子的作用又使溶胶聚沉,这就是发生不规则聚沉的原因。

胶体的重要性质和应用

本质特征就是指它和别的分散系的不同点(也就是胶体独有的性质)而丁达尔效应并不是只有胶体才有当浊液的分散质直径接近100nm时也会产生丁达尔效应

下一篇:核因子kb作用(细胞核因子kb) 上一篇:二聚化作用(二聚体是什么)