您当前所在位置:主页 > 饮食养生 >

最小作用量(最小作用量原理推导拉格朗日方程)

更新:2022-10-20 00:00编辑:bebe归类:饮食养生人气:68

最小作用量原理推导拉格朗日方程

拉格朗日乘数的数值是按照实际演算获取的,不排除为0的可能性。根据推导过程可知,λ是不可以等于0的。

1.如果等于0,f对x求导,就是原函数对x求导

2.f对y求导,就是原函数对y求导

3.上面两个式子一般是不可能解出来的 由拉格朗日乘数法的推导过程可以看出,λ≠0,否则驻点(x0,y0)满足的式子就变成了

4.f对x的偏导=0

5.f对y的偏导=0

6.f对λ的偏导=0

7.前面两个式子一般是不成立的。

8.求z=xy^2在x^2+y^2=1下的极值?一般应该是求最大值、最小值!

9.一种方法是化成一元函数的极值z=x(1-x^2),-1≤x≤1.

10.用拉格朗日乘数法的话,设L(x,y)=xy^2+λ(x^2+y^2-1),解方程组

11.y^2+2λx=0

12.2xy+2λy=0

13.x^2+y^2=1

14.前两个方程求出x=-λ,y^2=2λ^2,代入第三个式子得λ=±1/√3,所以x=±1/√3,y=±√(2/3),比较4个驻点处的函数值可得最大值和最小值

拉格朗日定理的实际应用

柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理之一。其几何意义为,用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。该定理可以视作在参数方程下拉格朗日中值定理的表达形式。

柯西中值定理粗略地表明,对于两个端点之间的给定平面弧,至少有一个点,使曲线在该点的切线平行于两端点所在的弦。

由达朗贝尔原理推导拉格朗日方程

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。

波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。

历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。

1746年,达朗贝尔发现了一维波动方程,欧拉在其后10年之内发现了三维波动方程。

理论力学中的拉格朗日方程

拉格朗日乘数法(以数学家约瑟夫·路易斯·拉格朗日命名)是一种寻找变量受一个或多个条件所限制的 多元函数的 极值的方法。

这种方法将一个有n 个变量与k 个 约束条件的最优化问题转换为一个有n + k个变量的方程组的极值问题,其变量不受任何约束。

这种方法引入了一种新的标量未知数,即拉格朗日乘数:约束方程的梯度(gradient)的线性组合里每个向量的系数。

此方法的证明牵涉到偏微分, 全微分或链法,从而找到能让设出的隐函数的微分为零的未知数的值。

拉格朗日方程推导运动方程

一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。这些点的存在由法国数学家拉格朗日于1772年推导证明的。1906年首次发现运动于木星轨道上的小行星(见脱罗央群小行星)在木星和太阳的作用下处于拉格朗日点上。在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。每个稳定点同两大物体所在的点构成一个等边三角. 在天体力学中,拉格朗日点是限制性三体问题的5个特解。例如,两个天体环绕运行,在空间中有5个位置可以放入第三个物体(质量忽略不计),并使其保持在两个天体的相应位置上。理想状态下,两个同轨道物体以相同的周期旋转,两个天体的万有引力与离心力在拉格朗日点平衡,使得第三个物体与前两个物体相对静止。

推导拉格朗日动力学方程

分析力学是理论力学的一个分支,是对经典力学的高度数学化的表达。获得途径如下:

经典力学最初的表达形式由牛顿给出,大量运用几何方法和矢量作为研究工具,因此它又被称为矢量力学(有时也叫“牛顿力学”)。拉格朗日,哈密顿,雅可比等人使用广义坐标和变分法,建立了一套同矢量力学等效的力学表述方法。同矢量力学相比,分析力学的表述方法具有更大的普遍性。很多在矢量力学中极为复杂的问题,运用分析力学可以较为简便的解决。

分析力学的方法可以推广到量子力学系统和复杂动力学系统中,在量子力学和非线性动力学中都有重要应用。

拉格朗日定理推导过程

首先,由于点( a,f(a) )和点( b,f(b) )的连线方程是这样的 y=[ (f(b)-f(a))/(b-a) ](x-a)+f(a)

所以构造函数成两曲线距离d与x之间的关系即可:H(x)=f(x)-y (曲线减去直线)

由于两条线的起点与终点均重合,所以必然符合罗尔定理的条件H(a)=H(b),然后马上可以用罗尔定理证得.

思路:

1、拉格朗日中值定理其实就是罗尔定理的推广(或者说一般情况),而柯西中值定理就是拉格朗日中值定理的推广(或者说特殊情况).

2、罗尔定理的条件f(a)=f(b)就意味着是点( a,f(a) )和点( b,f(b) )的连线平行于坐标轴的情况,然后求函数f(x)的极值点(等价于求f'(k)=0的点)属于特殊情况.

而拉格朗日中值定理的情况是,罗尔定理的一般情况.( a,f(a) )和点( b,f(b) )的连线已经跟x轴产生夹角了,所以构造函数的时候就要把它的坐标轴转变一下.然后还是跟罗尔定理一样,求出函数H(x)的极值点即可.

拉格朗日法推导动力学方程

应该是动力学普遍方程

定义:

动力学普遍方程(dynamics,general equation of),结合虚位移原理和达朗贝尔原理而得出的动力学基本方程 。又称达朗贝尔-拉格朗日原理。它是动力学普遍原理之一,是研究质点系动力学的基础。

可表述为:任一瞬时,作用在受理想约束质点系上的所有主动力和惯性力,在该瞬时任何虚位移上的元功之和等于零。

由拉格朗日方程推导哈密顿原理

哈密顿原理,是英国数学家W.B.哈密顿1834年发表的动力学中一条适用于完整系统十分重要的变分原理。它可表述为:在N+1维空间(q1,q2,…,qN;t)中,任两点之间连线上动势L(q,t)(见拉格朗日方程)的时间积分以真实运动路线上的值为驻值。属于物理学领悟域。

拉格朗日方程的理论基础

拉格朗日量

拉格朗日表述是经典力学的一种重新表述。拉格朗日表述的重要性,不只是因为它可以广泛应用在经典力学;而更是因为它能够帮助物理学家更深刻地了解一个物理系统的物理行为。虽然拉格朗日只是在寻找一种表述经典力学的方法,他用来推导拉格朗日方程的平稳作用量原理,现在已被学术界公认为在量子力学也极具功用。

拉格朗日方程的作用

6问适不适用,就要看伯努利方程的基本假设有哪些了伯努利方程成立的四个基本假设:定常、不可压、无粘、沿流线。垍頭條萊

因此,只要不符合上述假设的情况可以说都不适用。伯努利方程是相对来说应用条件非常苛刻的一个方程了,用的时候必需小心上述假设,相对来说拉格朗日方程条件更宽松些。下面简单说说为啥不适用,首先,伯努利方程是欧拉方程的积分形式,本身方程中是没有粘性项的,也就没有粘性耗散,在粘性力可以忽略的情况下是合理的,但对于低雷诺数,粘性力作用不可忽略时,直接用伯努利方程会带来很大的误差。萊垍頭條

其实,到非常接近物面的边界层内,伯努利方程就已经不适用了,特别是进入粘性底层之后,粘性作用占主导地位。頭條萊垍

如果问这时候压力速度相关的方程是什么,基于NS方程发展的都可以表征,只是没有伯努利方程这么简单形式罢了~~頭條萊垍

下一篇:手五里的作用(手五里的功效) 上一篇:胸膜贴的副作用(胸部贴贴膜的作用)