酶的激活剂作用机理(酶的激活剂作用机理是)
酶的激活剂作用机理是
这个酶一般在体内的能量不足时开始作用,体内能量不足的标志就是ADP,GDP含量上升。
它的激活能加速氨基酸的氧化产生能量,因为这个酶开启的下游反应是产能的。它催化的反应是耗能的,这与整个的代谢调节是不冲突的。
作用机制是影响酶活性的药物是
在无酶催化的情况下,底物需要越过一个较高的活化能才能发生反应,变成产物。酶作为催化剂所起的作用就是降低活化能,从而使反应速度加快。 从底物角度来说,当底物进入酶活性中心区域得到集中、浓缩后,由于酶与底物的相互作用,致使两者的构象都发生了变化,此时底物分子内某些基团电子密度发生了变化,形成所谓电子张力,使与之相连的敏感键一端变得更加敏感,更易断裂。 稳定的酶-底物共价中间物,此中间物很容易变成过渡态。使反应活化能大为降低,这样底物就可以越过较低活化能屏障形成产物。同时酶和底物的相互作用时要释放一些结合能,以使酶-底物复合物稳定,同时可用来降低化学反应所需的活化能了。
酶激活的机制是什么
淀粉酶激活剂Cl离子怎么加快酶促反应的,原理是什么
淀粉酶那个实验,加硫酸铜抑制,氯化钠激活.如果硫酸钠没有影响,则证明起抑制作用的是铜离子,起激活作用的是氯离子.很少量的激活剂或抑制剂就会影响酶的活性,而且常具有特异性(值得注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则成为该酶的抑制剂,例如nacl是唾液淀粉酶的激活剂,但nacl浓度到1/3饱和度时就可抑制唾液淀粉酶的活性)
酶的激活剂作用机理是什么
变(别)构效应调节物或效应物与酶别构中心结合后,诱导或稳定酶分子的某一构象,使酶活性中心的催化作用受到调节,从而调节酶反应速率及代谢过程.又叫协同效应.2共价修饰通过在酶蛋白某些氨基酸残基上增、减基团的方法,调节酶的活性态与非活性态间的相互转化,从而调节酶的活性.是可逆的3酶原激活酶原从无活性酶转变成有活性酶,是不可逆共价修饰.(酶原:活性中心被掩埋在分子的内部或尚未形成,使底物不可接触,需要经过一定的剪切,使肽链重新盘绕方能暴露或形成活性中心的一类无活性酶的前体)
4酶分子的聚合和解聚大多数情况下,酶与一些小分子调节因子结合,从而引起酶的聚合和解聚,实现酶的活性与无活性态间的相互转化.是一种非共价结合.5抑制剂和激活剂酶活性受到多种离子和有机分子(大分子或小分子物质)的影响,尤其是特异的蛋白质激活剂和抑制剂在酶活性的调节中起重要作用
酶的激活剂作用机理是什么意思
1、温度:酶促反应在一定温度范围内反应速度随温度的升高而加快;但当温度升高到一定限度时,酶促反应速度不仅不再加快反而随着温度的升高而下降。在一定条件下,每一种酶在某一定温度时活力最大,这个温度称为这种酶的最适温度。
2、酸碱度:每一种酶只能在一定限度的pH范围内才表现活性,超过这个范围酶就会失去活性。
3、酶浓度:在底物足够,其它条件固定的条件下,反应系统中不含有抑制酶活性的物质及其它不利于酶发挥作用的因素时,酶促反应的速度与酶浓度成正比。
4、底物浓度:在底物浓度较低时,反应速度随底物浓度增加而加快,反应速度与底物浓度近乎:成正比,在底物浓度较高时,底物浓度增加,反应速度也随之加快,但不显著;当底物浓度很大且达到一定限度时,反应速度就达到一个最大值,此时即使再增加底物浓度,反应也几乎不再改变。
5、抑制剂:能特异性的抑制酶活性,从而抑制酶促反应的物质称为抑制剂。
6、激活剂:能使酶从无活性到有活性或使酶活性提高的物质称为酶的激活剂。
酶的激活剂和抑制剂对酶的作用原理
酶的活性与所处环境的温度和PH值有关,一些激活剂和抑制剂也能影响酶的活性。
1.温度
当外界环境温度低于最适温度时,酶的活性在一定范围内随温度升高而增强;当外界环境温度为最适温度时,酶的活性最强;当外界环境温度高于最适温度时,酶的活性随温度的升高而降低。低温只会降低酶的活性,但不会使其失活,而高温则会使酶失活。
2.PH值
酶的活性随PH值的升高的变化趋势与温度基本相同,但不同的是,Ph值过高或过低都会使酶失活。
3.激活剂和抑制剂
顾名思义,激活剂会增强酶的活性,而抑制剂会降低酶的活性。抑制剂的作用原理∶抑制剂可以与酶结合,从而减少酶与底物的结合。
激活剂对酶活性作用机理
淀粉酶那个实验,加硫酸铜抑制,氯化钠激活.如果硫酸钠没有影响,则证明起抑制作用的是铜离子,起激活作用的是氯离子.
酶的激活剂的作用原理
循环过程
乙酰-CoA进入由一连串反应构成的循环体系,被氧化生成H₂O和CO₂。由于这个循环反应开始于乙酰CoA与草酰乙酸(oxaloaceticacid)缩合生成的含有三个羧基的柠檬酸,因此称之为三羧酸循环或柠檬酸循环(citratecycle)。在三羧酸循环中,柠檬酸合成酶催化的反应是关键步骤,草酰乙酸的供应有利于循环顺利进行。萊垍頭條
其详细过程如下: 頭條萊垍
1、乙酰-CoA进入三羧酸循环 乙酰CoA具有硫酯键,乙酰基有足够能量与草酰乙酸的羧基进行醛醇型缩合。首先柠檬酸合酶的组氨酸残基作为碱基与乙酰-CoA作用,使乙酰-CoA的甲基上失去一个H+,生成的碳阴离子对草酰乙酸的羰基碳进行亲核攻击,生成柠檬酰-CoA中间体,然后高能硫酯键水解放出游离的柠檬酸,使反应不可逆地向右进行。该反应由柠檬酸合酶(citratesynthase)催化,是很强的放能反应。由草酰乙酸和乙酰-CoA合成柠檬酸是三羧酸循环的重要调节点,柠檬酸合酶是一个变构酶,ATP是柠檬酸合酶的变构抑制剂,此外,α-酮戊二酸、NADH能变构抑制其活性,长链脂酰-CoA也可抑制它的活性,AMP可对抗ATP的抑制而起激活作用。 萊垍頭條
2、异柠檬酸形成 柠檬酸的叔醇基不易氧化,转变成异柠檬酸而使叔醇变成仲醇,就易于氧化,此反应由顺乌头酸酶催化,为一可逆反应。 頭條萊垍
3、第一次氧化脱羧 在异柠檬酸脱氢酶作用下,异柠檬酸的仲醇氧化成羰基,生成草酰琥珀酸(oxalosuccinicacid)的中间产物,后者在同一酶表面,快速脱羧生成α-酮戊二酸(α-ketoglutarate)、NADH和CO2,此反应为β-氧化脱羧,此酶需要镁离子作为激活剂。此反应是不可逆的,是三羧酸循环中的限速步骤,ADP是异柠檬酸脱氢酶的激活剂,而ATP,NADH是此酶的抑制剂。 萊垍頭條
4、第二次氧化脱羧 在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化脱羧生成琥珀酰-CoA、NADH·H+和CO₂,反应过程完全类似于丙酮酸脱氢酶系催化的氧化脱羧,属于α氧化脱羧,氧化产生的能量中一部分储存于琥珀酰coa的高能硫酯键中。α-酮戊二酸脱氢酶系也由三个酶(α-酮戊二酸脱羧酶、硫辛酸琥珀酰基转移酶、二氢硫辛酸脱氢酶)和五个辅酶(tpp、硫辛酸、hscoa、NAD+、FAD)组成。此反应也是不可逆的。α-酮戊二酸脱氢酶复合体受ATP、GTP、NADH和琥珀酰-CoA抑制,但其不受磷酸化/去磷酸化的调控。 頭條萊垍
5、底物磷酸化生成ATP 在琥珀酸硫激酶(succinatethiokinase)的作用下,琥珀酰-CoA的硫酯键水解,释放的自由能用于合成gtp,在细菌 和高等生物可直接生成ATP,在哺乳动物中,先生成GTP,再生成ATP,此时,琥珀酰-CoA生成琥珀酸和辅酶A。 垍頭條萊
6、琥珀酸脱氢 琥珀酸脱氢酶(succinatedehydrogenase)催化琥珀酸氧化成为延胡索酸。该酶结合在线粒体内膜上,而其他三羧酸循环的酶则都是存在线粒体基质中的,这酶含有铁硫中心和共价结合的fad,来自琥珀酸的电子通过fad和铁硫中心,然后进入电子传递链到O₂,丙二酸是琥珀酸的类似物,是琥珀酸脱氢酶强有力的竞争性抑制物,所以可以阻断三羧酸循环。 條萊垍頭
7、延胡索酸的水化 延胡索酸酶仅对延胡索酸的反式双键起作用,而对顺丁烯二酸(马来酸)则无催化作用,因而是高度立体特异性的。 萊垍頭條
8、草酰乙酸再生 在苹果酸脱氢酶(malicdehydrogenase)作用下,苹果酸仲醇基脱氢氧化成羰基,生成草酰乙酸(oxalocetate),NAD+是脱氢酶的辅酶,接受氢成为NADH·H+萊垍頭條
激活剂对酶活性的影响原理
pH、温度、紫外线、重金属盐、抑制剂、激活剂等通过影响酶的活性来影响酶促反应的速率,紫外线、重金属盐、抑制剂都会降低酶的活性,使酶促反应的速度降低,激活剂会促进酶活性来加快反应速度,pH和温度的变化情况不同,既可以降低酶的活性,也可以提高,所以它们既可以加快酶促反应的速度,也可以减慢;酶的浓度、底物的浓度等不会影响酶活性,但可以影响酶促反应的速率.酶的浓度、底物的浓度越大,酶促反应的速度也快.