飞机的作用(机翼对飞机的作用)
机翼对飞机的作用
机翼是飞机的重要部件之一,安装在机身上。其最主要作用是产生升力,以支持飞机在空中飞行,也起一定的稳定和操纵作用,同时也可以在机翼内部置弹药仓和油箱,在飞行中可以收藏起落架。另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。
机翼内部经常用来放置燃油。在机翼厚度允许的情况下飞机主起落架也经常是全部或部分地收在机翼内。此外许多飞机的发动机或是直接固定在机翼上或是吊挂在机翼下面。
飞机的尾翼是操纵飞机俯仰和偏转、专门负责飞机平稳飞行的重要部件。竖直方向的尾翼主要保证飞机 的飞行方向;水平方向的尾翼主要保证飞机飞行时安全地上下升降。除了操纵飞机正确地偏转和升降,飞机的尾翼 对于飞机的重心及机翼的升力还有着平衡作用。安装在飞机头部的螺旋桨不停旋转,拉动飞机前进。
机翼相对于机身的位置
区别:
仰角是飞机的纵轴与水平线之间的夹角 ,向上为正, 向下为负。
迎角的定义是飞机机翼的翼弦与相对气流之间的夹角 ,同样向上为正。
迎角和仰角没有什么必然联系 ,仰角和飞机姿态有关, 同一仰角可以有不同的迎角。
飞行时迎角数据由飞机的大气数据计算机给出, 一般在机身侧面,会有一个迎角探测器, 原理有点像风向标 。
迎角(Angleofattack),是固定翼飞机机翼弦线和气流速度的夹角,或者说是机翼弦线和飞机速度矢量方向的夹角,也称为攻角,它是确定机翼在气流中姿态的基准。
迎角大小与飞机的空气动力密切相关。飞机的升力与升力系数成正比;阻力与阻力系数成正比。升力系数和阻力系数都是迎角的函数。在一定范围内,迎角越大,升力系数与阻力系数也越大。但是,当迎角超过某一数值(称为临界迎角),升力系数与阻力系数反而减小。这时飞机就可能失速。因此,迎角是重要的飞行参数之一。飞行员必须使飞机在一定的迎角范围内飞行。所以有的飞机有一块专门指示迎角的仪表——迎角表。有的飞机还有失速警告系统。当实际迎角接近临界迎角而使飞机有失速的危险时,失速警告系统即发出各种形式的告警信号。
对于直升机和旋翼机,迎角的表示方法与固定翼飞机略有不同,它是指与前进方向垂直的轴和旋翼的控制轴之间的夹角。
机翼对飞机的作用是什么
飞机的尾翼是安装在飞机后部的起稳定和操纵作用的装置。尾翼一般分为垂直尾翼和水平尾翼。垂直尾翼后部有一个方向舵,水平尾翼后部有升降舵。;飞机尾翼的作用;
1、平衡的作用;飞机主要依靠机翼来产生升力。但是,机翼的升力中心往往与飞机的重心是不重合的,也就是说,机翼的升力会对重心产生一个力矩,会使飞机上仰或下俯(因飞机而异),为了平衡这个力矩,就需要尾翼来产生一个相反的力矩。这个作用就是依靠水平尾翼来完成的。;
2、操纵的作用;水平尾翼是用来操纵飞机上仰和下俯的。例如,为了使飞机上仰,就可拉驾驶杆,使升降舵向上翘,气流经过水平尾翼时,其上部的流速减慢,下部的流速加快,这就产生了一个附加的向下的力,对飞机重心形成一个向上的力矩,其结果就使得飞机上仰;反之则下俯。;垂直尾翼的方向舵是用来操纵飞机方向偏转的。通过飞行员左、右蹬舵,使垂直尾翼上的方向舵左、右偏转。如飞行员蹬左舵,方向舵左偏,相对气流作用在方向舵面上,使垂直尾翼上产生一个向右的侧力,对飞机重心构成了一个使机头左偏的方向操纵力矩,飞机向左发生偏转;同样地,飞行员蹬右舵,机头就会向右偏转。
机翼在飞机飞行中的作用
飞机机翼的主要功能就是产生升力,以支持飞机在空中飞行。
当飞机的机翼为对称形状,气流沿着机翼对称轴流动时,由于机翼两个表面的形状一样,因而气流速度一样,所产生的压力也一样,此时机翼不产生升力。但是当对称机翼以一定的倾斜角(称为攻角或迎角)在空气中运动时,就会出现与非对称机翼类似的流动现象,使得上下表面的压力不一致,从而也会产生升力。
飞机在飞行过程中受到四种作用力:升力,由机翼产生的向上作用力。重力,与升力相反的向下作用力,由飞机及其运载的人员、货物、设备的重量产生。推力,由发动机产生的向前作用力。阻力,由空气阻力产生的向后作用力,能使飞机减速。
飞机机翼的主要作用是什么
飞机机翼产生升力的原理,公认的说法是大气施加与机翼下表面的压力(方向向上)比施加于机翼上表面的压力(方向向下)大,二者的压力差便形成了飞机的升力。飞机向前飞行得越快,机翼产生的气动升力也就越大。机翼是飞机的重要部件之一,安装在机身上。其最主要作用是产生升力,同时也可以在机翼内部置弹药仓和油箱,在飞行中可以收藏起落架。另外,在机翼上还安装有改善起飞和着陆性能的襟翼和用于飞机横向操纵的副翼,有的还在机翼前缘装有缝翼等增加升力的装置。
机翼的作用是
在机翼构造形式的发展过程中,最主要的变化是维形构件和受力构件的逐渐合并。因此,根据其构造形式的发展,我们可以将机翼分为构架式、梁式、单块式以及整体壁板式。
构架式机翼:构架式机翼主要应用于飞机发展的初期,其结构特点是:受力件与维形件完全分工并分段承受鼓荷。构架式机翼的受力骨架是由翼梁、张线、横支柱等组成的空间骨架系统,它承受所有的弯矩、剪力和扭矩;其蒙皮是用亚麻布制成,只起维形作用,不参与受力。早期飞机大多数采用这种形式的机翼。
梁式机翼:随着飞机速度的增大,出现了蒙皮参加受力的梁式机翼。其特点是有强有力的翼梁和硬质蒙皮,常用金属铆接结构。梁式机翼为现今飞机所广泛采用,其大部分弯矩由翼梁承受,梁腹板承受剪力,蒙皮和腹板组成的盒段承受扭矩,蒙皮也参与翼梁缘条的承弯作用。梁式机翼的不足之处是蒙皮较薄,桁条较少,因此,其机翼蒙皮的承弯作用不大。根据翼梁的数量不同,我们还可以进一步将梁式机翼分为单梁式、双梁式和多梁式机翼。
单块式机翼:随着飞行速度的进一步增大,为保持机翼有足够的局部刚度和扭转刚度,需要加厚蒙皮并增多桁条。这样,由厚蒙皮和桁条组成的壁板已经能够承受大部分弯矩,因而梁的凸缘就可以减弱,直至变为纵樯,于是就发展成为了没有翼梁的单块式机翼。单块式机翼的维形构件和受力构件已经完全合并。
整体壁板式机翼:单块式机翼的壁板是铆接的,其零件数量较多,而且表面质量较差,高速飞行时阻力较大。因此,又发展出了由若干块整体壁板组合而成的整体壁板式机翼。整体壁板式机翼的结构强度根据各部分的实际受力情况而设计,同时减少了连接的铆钉孔和螺栓孔,因此其重量减少,而强度、刚度及抗疲劳度都增加。