dna修复组蛋白与dna的作用(DNA修复的生物学意义)
DNA修复的生物学意义
首先要区分基因重组和基因突变的含义:基因重组是指非等位基因间的重新组合。能产生大量的变异类型,但只产生新的基因型,不产生新的基因。
基因突变是指基因的分子结构的改变,即基因中的脱氧核苷酸的排列顺序发生了改变,从而导致遗传信息的改变。基因突变的频率很低,但能产生新的基因,对生物的进化有重要意义。
基因工程中用到的目的基因是自然界已有的,从而培育出的转基因生物只是产生新的基因型,不产生新的基因,所以说基因工程的原理是基因重组而不是基因突变。
dna修复对生物体有何意义
DNA复制过程中如果出错,有可能导致某些基因发生突变,对于生物来说,发生基因突变如果再导致性状的改变对生物大多时候是不利的。但这个改变并不是绝对不利的,基因突变有可以使生物出现更适应环境的性状。 DNA复制是生物遗传的基础,是所有生物体中最基本的过程。而这一过程是半保留复制,是以最开始的双链分子中的一条作为模板进行DNA复制,产生两个完全一致的DNA分子。
DNA修复的细胞机制
1.G1期 (DNA合成前期)
在S期之前,即前一次有丝分裂完成之后到S期开始之间的时期,称为第一间隙期(gap phase),简称G1期。
细胞进入G1期后,即开始为下一次分裂做准备。各种与DNA复制有关的酶在G1期明显增加,线粒体、叶绿体、核糖体都增多了,内质网扩大,高尔基体、溶酶体等的数目都增加了。动物细胞的2个中心粒也彼此分离并开始复制。
主要合成RNA和核糖体。
2.S期(DNA合成期)
细胞分裂时的DNA合成是在间期的一定时间内完成的,这一时期称为合成期(synthesis phase,简称S期。
染色质中的组蛋白,也是在S期合成的。
3.G2期(DNA合成后期)
从S期结束后到有丝分裂开始之间的时期称为第二间隙期,即G2期。
在G1期和G2期中,细胞不合成DNA,但损伤的DNA可在此时修复。
dna修复机制有哪些
DNA损伤修复(repair of DNA damage),在多种酶的作用下,生物细胞内的DNA分子受到损伤以后恢复结构的现象。
DNA损伤修复的研究有助于了解基因突变机制,衰老和癌变的原因,还可应用于环境致癌因子的检测。
DNA修复的概念
dna校对是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。
也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。
DNA修复的意义
基因突变是基因组DNA分子发生的突然的、可遗传的变异现象。从分子水平上看,基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。
1基因突变在哪个时期发生
基因突变可以发生在发育的任何时期,通常发生在DNA复制时期,即细胞分裂间期,包括有丝分裂间期和减数分裂间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。
2基因突变不一定发生在分裂间期
一、复制时引起的基因突变
在DNA复制过程中,可能产生碱基的错配,带有错配碱基的DNA在下一次复制时,则会引起碱基的替代,从而引起DNA分子的错误,由于DNA分子中的碱基本身存在着交替的化学结构,称为互变异构体,当碱基以它稀有的形式出现时就可能与错误的碱基配对,这种碱基化学结构的改变过程称为互变异构移位。
碱基的互变异构可以在DNA复制过程中自发发生。它导致的碱基替代如果是发生在同类碱基之间,即一种嘌呤被另一种嘌呤替代,或一种嘧啶被另一种嘧啶替代,这称为转换;若碱基的替代发生异类碱基之间,即一种嘌呤被一种嘧啶替代,或反之,则称为颠换。
二、复制前引起的基因突变
1.自发的化学变化
(1)脱嘌呤
由于碱基和脱氧核糖间的糖苷键断裂,从而引起一个鸟嘌呤或一个腺嘌呤从DNA分子上脱落下来,研究发现,在37℃条件下培养一个哺乳动物细胞20小时,会有数以千计的嘌呤通过脱嘌呤作用自发地脱落。如果这种损伤得不到修复,就会引起很大的遗传损伤,因为在DNA复制的过程中,无嘌呤位点将没有特异碱基与之互补,而可能随机地选择一个碱基插进去,结果导致突变。
(2)脱氨基作用
在一个碱基上去掉氨基,常见的胞嘧啶(C)和5-甲基胞嘧喧(m5C),它们脱氨基后分别变成尿嘧啶(U)和胸腺嘧啶(T),从而使DNA分子受到损伤。由于在DNA中U不是一个正常碱基,因此如果它不被除去在DNA复制中它将与腺嘌呤(A)配对,导致原来的GC碱基对转变为AT碱基对。5-甲基胞嘧啶是基因组中常见的一种经甲基化修饰的碱基,由于它脱氨基后变成胸腺嘧啶(T),因此它可将DNA中的m5CG碱基对转变为AT碱基对。并且,由于T是DNA分子中的正常碱基,修复系统不能将其作为非正常碱基识别,结果错误碱基通常不能被修复,从而导致m5C位点常常成为突变热点,在该位点发生突变的频率要比其他位点高得多。
脱氨基造成的碱基转换
2.转座因子或插入序列引起
在生物基因组内存在的可移动DNA序列转座因子或插入序列,通过在基因组内的移动也经常引起基因功能的失活或改变。现已知道,在玉米、果蝇等生物中发生的一些典型突变就是由于这类可移动DNA序列的插入所引起的。
转座子或插入序列引起基因突变的机制
3.化学诱变(1)碱基修饰剂
有的化学诱变剂并不是掺入到DNA中,而是通过对碱基的化学结构进行修饰使其性质发生改变,从而引起特异性错配,如亚硝酸、羟胺、烷化剂等。
例如,亚硝酸(HNO2)是一种有效的诱变剂,它能作用于腺嘌呤(A)使其脱去分子中的氨基而转化为次黄嘌呤(H)。由于次黄嘌呤的分子结构特点,它能暂时与胞嘧啶(C)配对。在以后的复制过程中,次黄嘌呤又被鸟嘌呤(G)所代替,从而形成了CG碱基对,结果使AT改变为CG。
(2)插入突变剂
这类化合物主要包括吖啶橙、原黄素、黄素等吖啶类染料,它们均含有吖啶环,是一种平面分子,其分子大小与碱基对大小差不多,可以插入到DNA双螺旋双链或单链的两相邻碱基之间。如果它们插在DNA模板链中,合成新链时必须要有一个碱基因插入相应位置以填补空缺,这个碱基并不存在配对问题,是随机选择的。合成的新链上一旦插入了一个咸基,在下一轮复制时必然会增加一个碱基。若这类插入突变剂在插入新合成DNA链时取代了一个碱基,并且在下一轮DNA复制前该插入剂又被丢失,那么就会导致下一轮DNA复制时减少一个碱基。因此,插入突变剂通过在其插入位置上引起碱基对的插入或缺失突变,结果会导致可读框的改变,造成移码突变。
4.物理因素引起的突变
当用紫外线诱变处理时,紫外线的照射能使物质的分子因激发而变成活化分子。被照射物质分子的电子吸收了紫外线的能量后从低能轨道跃迁到高能轨道,从而使物质的分子处于活化状态。
紫外线的生物学效应主要是引起DNA分子的变化造成的。DNA能强烈地吸收紫外线,尤其是DNA分子链中的碱基对,它们对紫外线具有特殊的吸收能力。紫外线引起DNA结构改变的形式很多,例如DNA链的断裂、DNA分子内和分子间的交联、DNA与蛋白质的交联、嘧啶的水合作用和二聚体的形成等,其中主要的是水合物和二聚体的形成。
dna修复的生物学意义是什么
简单地说,基因突变的可逆性就是指变异的位点又发生突变并变回原来正常的基因序列。突变基因又可以通过突变而成为野生型基因,这一过程称为回复突变。正向突变率总是高于回复突变率,一个突变基因内部只有一个位置上的结构改变才能使它恢复原状。
1、基因突变(genic mutation):
基因突变(gene mutation)是由于DNA分子中发生碱基对的增添、缺失或替换,而引起的基因结构的改变,就叫做基因突变。1个基因内部可以遗传的结构的改变。又称为点突变,通常可引起一定的表型变化。广义的突变包括染色体畸变。狭义的突变专指点突变。实际上畸变和点突变的界限并不明确,特别是微细的畸变更是如此。野生型基因通过突变成为突变型基因。突变一词既指突变基因,也指具有这一突变基因的个体。
基因突变通常发生在DNA复制时期,即细胞分裂间期,包括有丝分裂间期和减数第一次分裂前的间期;同时基因突变和脱氧核糖核酸的复制、DNA损伤修复、癌变和衰老都有关系,基因突变也是生物进化的重要因素之一,所以研究基因突变除了本身的理论意义以外还有广泛的生物学意义。基因突变为遗传学研究提供突变型,为育种工作提供素材,所以它还有科学研究和生产上的实际意义。
dna修复的生物学意义包括
DNA变性将DNA分子由稳定的双螺旋结构松解为无规则线性结构;DNA的复性是变性DNA在适当条件下,二条互补链全部或部分恢复到天然双螺旋结构,它是变性的一种逆转过程。
DNA变性和复性的应用,目前主要运用于DNA复制,和分子生物学相关实验上,应用相当广范.如PCR这一DNA复制过程其理论基础就是DNA变性和复性.