您当前所在位置:主页 > 美容美体 >

dna剪切酶的作用(dna切割酶作用)

更新:2022-11-19 13:42编辑:bebe归类:美容美体人气:86

dna切割酶作用

算是自我保护的一种武器。原核生物容易受到自然界外源DNA的入侵,于是原核生物在长期进化中形成了一套完善的防御机制,以防止外来病原物的侵害。

限制酶是细菌的一种防御性工具,当外源DNA侵入时,限制酶可以将外源DNA切割掉,使其失效,保护自身

切割dna的酶

一种限制性核酸内切酶只能识别一种特定的核苷酸序列,在基因工程中,只有用同种限制酶切出来的切口(两端)才是相同的,这样目的 基因与运载体 被切割出来的粘性末端的氢键才能互相配对并连在一起,然后才用DNA连接酶将他们连接。

切割RNA的酶

制备互补DNA,往往需要先分离从目的基因转录来的mRNA.如果该基因编码的蛋白质是细胞中的主要蛋白质,则此基因的产物是总mRNA的主要组成部分。就胰岛B细胞而论,此细胞含有高水平胰岛素前体mRNA,后者有时可以沉淀正在翻译的mRNA的核糖核蛋白体,如果用特异抗体结合所表达的蛋白质(抗原),则可从沉淀的核糖体中分离出胰岛素特异的mRNA,一般特异mRNA只是细胞总mRNA中的次要成分。

在这种情况下,不得不以密度梯度离心,按分子量大小把总mRNA分开,然后把分离开的mRNA直接用于试管中表达蛋白质(用家兔网织细胞的溶胞产物或小麦胚芽提取物作为翻译系统的诱导物)再用免疫沉淀或聚丙烯酰胺凝胶电泳从许多表达的蛋白中测定出目的蛋白,从而确定表达该蛋白的特异mRNA。合成步骤

1.cDNA第一链的合成 所有合成cDNA第一链的方法都要用依赖于RNA的DNA聚合酶(反转录酶)来催化反应。商品化反转录酶有从禽类成髓细胞瘤病毒纯化到的禽类成髓细胞病毒(AMV)逆转录酶和从表达克隆化的Moloney鼠白血病病毒反转录酶基因的大肠杆菌中分离到的鼠白血病病毒(MLV)反转录酶。AMV反转录酶包括2个具有若干种酶活性的多肽亚基,这些活性包括依赖于RNA的DNA合成,依赖于DNA的DNA合成以及对DNA-RNA杂交体的RNA部分进行内切降解(RNA酶H活性)。

MLV反转录酶只有单个多肽亚基,兼备依赖于RNA和依赖于DNA的DNA合成活性,但降解DNA—RNA杂交体中的RNA的能力较弱。且其热稳定性较AMV反转录酶差。MLV反转录酶能合成较长的eDNA(如大于2~3kb)。AMV反转录酶和MI。V反转录酶利用RNA模板合成cDNA时的最适pH、最适盐浓度和最适温度各不相同.所以合成第一链时相应调整条件是非常重要的。

AMV反转录酶和MLV反转录酶都必须有引物来起始DNA的合成。cDNA合成最常用的引物是与真核细胞mRNA分子3’端poly(A)结合的12~18个核苷酸长的oligo(dT)。

2.cDNA第二链的合成 cDNA第二链的合成方法有以下几种:

(1)自身引导法。合成的单链eDNA3’端能够形成一短的发夹结构,这就为第二链的合成提供了现成的引物。当第一链合成反应产物的DNA—RNA杂交链变性后利用大肠杆菌DNA聚合酶I Klenow片段或反转录酶合成eDNA第二链,最后用对单链特异性的S1核酸酶消化该环,即可进一步克隆。但自身引导合成法较难控制反应,而且用S1核酸酶切割发夹结构时无一例外地将导致对应于mRNA5’端序列出现缺失和重排,因而该方法很少使用。

cDNA合成

(2)置换合成法。该方法利用第一链在反转录酶作用下产生的DNA RNA杂交链不用碱变性,而是在dNTP存在下。利用RNA酶H在杂交链的mRNA链上造成切口和缺口。

从而产生一系列RNA引物,使之成为合成第二链的引物。在大肠杆菌DNA聚合酶工的作用下合成第二链。该反应有3个主要优点:①非常有效;②直接利用第一链反应产物,无须进一步处理和纯化;③不必使用S1核酸酶来切割双链cDNA中的单链发夹环。

3.cDNA合成技术 以Riboclone M-MLV CDNA合成技术为例。

Riboclone M—MLV cDNA合成系统采用M—MLV反转录酶的RNase H缺失突变株取代AMV反转录酶,使合成的cDNA更长。该系统的第一链合成使用M-MLV反转录酶,cDNA第二链合成采用置换合成法,采用RNaseH和DNA聚合酶I进行置换合成,最后用T4 DNA聚合酶切去单链末端,方法简便易行。其基本步骤为先合成第一链:

(1)取一灭菌的无RNA酶的eppendorf管,加入RNA模板和适当引物,每RNA使用0.5ug引物(如使用Not I引物接头,用0.3ug),用HO调整体积至15ul,70℃处理5min冷却至室温,离心使溶液集中在管底,再依次加入:

5X第一链缓冲液5ul。

RNasinRNA酶抑制剂25U

M—MLV(H)反转录酶200U

H2O调至总体积25ul

(2)用手指轻弹管壁,吸取5ul至另一eppendorf管,加入2~5ulCi[α一P]dCTPdCTP(>400Ci/mmol),用以第一链同位素掺入放射性活性测定。

(3)37℃(随机引物)或42℃(其他引物)保温1h。

(4)取出置于冰上。

(5)掺入测定的eppendorf管加入95ul 50mM EDTA终止反应,并使总体积为100ul。可取90ul进行电泳分析(先用苯酚抽提)。另l0ul进行同位素掺入放射性活性测定。

(6)第一链合成eppendorf管可直接用于第二链合成。

以上25ul反应总体积中所用RNA量为1ug,如合成5ugRNA,则可按比例扩大反应体积。倒5ugRNA使用125uL总体积进行合成。

第一链合成后再进行第二链合成:

(1)取第一链反应液20uL,再依次加入:

10X第二链缓冲液20uL

DNA聚合酶123ul。

RNaseH0.8ul

H2O加至终体积为100/uL

(2)轻轻混匀,如需进行第二链同位素掺入放射性活性测定,可取出10uL至另一eppendorf管,加入2~5uLCi[α一P]dCTP。

(3)14℃温浴2h(如需合成长于3kb的cDNA,则需延长至3~4h)。

(4)掺入测定eppendorf管中加入90ul 50mM EDTA,取10ul进行同位素掺入放射性测定.余下的可进行电泳分析。

(5)将cDNA第二链合成的反应液70℃处理10min,低速离心后置于冰上。

(6)加入2uL T4 DNA聚合酶,37℃温育10min。

(7)加入10uL 200mmol/L EDTA终止反应。

(8)用等体积苯酚:氯仿抽提cDNA反应液,离心2min。

(9)水相移至另一eppendorf管,加入0.5倍体积的7.5mol/l醋酸铵(或0.1倍体积的1.5mol/L醋酸钠,pH5.2),混匀后再加入2.5倍体积的冰冷乙醇(一20℃),一20℃放置30min后离心5min。

(10)小心丢去上清液,加入0.5mL冰冷的70%乙醇,离心2min。

(11)小心移去上清液,干燥沉淀。

(12)沉淀溶于10~20ul TE缓冲液。

dna外切酶的作用

原理:Gibson assembly是一种one step, one pot的快速基因组装方法。它只需要将基因片段和需要的三种酶混合在同一个管内在50°C下培养15-60 min就可以得到组装好的DNA。

装配原理基于DNA片段间的重叠区域,过程依赖于三种酶:DNA 外切酶(T5 exonuclease), 高保真DNA聚合酶。(Phusion polymerase)和耐热DNA连接酶(Taq DNA ligase)的共同作用。首先,T5 核酸外切酶消化DNA片段的链方向是从5’到3’. 每个DNA片段分别形成一个单链的突出部分,由于着这两个相邻的突出片段有一部分具有同源性能够互补,所以DNA片段退火,互补的序列重新配对连接。然后,在空缺的部分DNA聚合酶以另一条DNA单链为模板,沿3' 方向将对应的脱氧核苷酸连接到单链上,填补缺口。

dna的酶切

要是环状DNA就有两个酶切位点,要是线性DNA就有一个酶切位点,对于二型限制性内切酶切点与酶切位点是一样的,一,三型的有识别位点与切割位点是不同的。

dna剪切用什么酶

rna剪接的意义:

①可纠正某些基因的移码突变,是有机体应付有害突变的一种手段。

②可为某些基因转录产物构建或删除起始密码子或终止密码子,以控制基因的翻译。

③能以增减核甘酸的方式扩充遗传信息。所以rna剪接是基因表达中的一种重要调控方式或补充机制。

选择性剪切是基因工程的基础方法,应用的是限制性内切酶,因为酶具有专业性,可以在一条DNA或RNA母链中根据人类意愿剪取一段目的基因,该过程既为选择性剪切。mRNA既信使RNA,发生在翻译阶段,基因工程中通过剪切特定的DNA片段导入载体中再导入受体,再通过细胞培养技术,得到有特定性状个体。

DNA酶切原理

获取目的基因的优点是操作简便,缺点是工作量大,具有一定的 盲目性。 获取目的基因的方法主要有两种:

一是从供体细胞的DNA中直接分离基因,最常用的方法是“鸟枪法”又叫“散弹射击法",另一种是人工合成基因,这种方法有两条途径,一是以目的基因转录的信使RNA为模板,反转录成互补的单链DNA,再在酶的作用下合成双链DNA,即目的基因,另一条途径是蛋白质的氨基酸序列,推测出信使RNA序列,再推测出结构基因的核苷酸序列,然后用化学的方法以单核苷酸为原料合成。

切开dna的酶

迄今为止,基因工程中使用的限制酶绝大部分都是从细菌或霉菌中提取出来的,它们各自可以识别和切断DNA上特定的碱基序列。

细菌中限制酶之所以不切断自身DNA,是因为微生物在长期的进化过程中形成了一套完善的防御机制,对于外源入侵的DNA可以降解掉。

生物在长期演化过程中,含有某种限制酶的细胞,其DNA分子中或者不具备这种限制酶的识别切割序列,或者通过甲基化酶将甲基转移到所识别序列的碱基上,使限制酶不能将其切开。

这样,尽管细菌中含有某种限制酶也不会使自身的DNA被切断,并且可以防止外源DNA的入侵

切dna的酶

因为限制性核酸内切酶是可以识别并附着特定的脱氧核苷酸序列,并对在每条链中特定部位的两个脱氧核糖核苷酸之间的磷酸二酯键进行切割的一类酶,简称限制酶。

根据限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型,分别是第一型(Type I)、第二型(Type II)及第三型(Type III)。

Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。III型限制性内切酶同时具有修饰及认知切割的作用。

扩展资料:

限制性核酸内切酶用途:

1、用于DNA基因组物理图谱的组建;基因的定位和基因分离;DNA分子碱基序列分析;比较相关的DNA分子和遗传工程。

2、限制性核酸内切酶是由细菌产生的,其生理意义是提高自身的防御能力.

3、限制酶一般不切割自身的DNA分子,只切割外源DNA。

影响条件:

DNA纯度、缓冲液、温度条件及限制性内切酶本身都会影响限制性内切酶的活性。大部分限制性内切酶不受RNA或单链DNA的影响。

分布区域:

限制性核酸内切酶分布极广,几乎在所有细菌的属、种中都发现至少一种限制性内切酶,多者在一属中就有几十种,例如在嗜血杆菌属中(Haemophilus)现已发现的就有22种。

有的菌株含酶量极低,很难分离定性;然而在有的菌株中,酶含量极高.如E. coli的pMB4(EcoRI酶)和H. aegyptius(Hal Ⅲ酶)就是高产酶菌株。

据报道从10g的H. aegyptius的细胞中,能分离提纯出可消化l0gλ噬茵体DNA的酶量。到目前为止,细菌是限制性内切酶,尤其是特异性非常强的I类限制性内切酶的主要来源。

dna切割酶和限制酶

基因工程中,限制酶的切割位点主要取决于限制酶能识别的特定的碱基序列。限制酶一般用于切割含目的基因的DNA片段和切割质粒。切割时需要把握的几个原则:

1.选择限制酶切割质粒,不能把质粒上的标记基因都切掉,最少保留一个标记基因。

2.选择限制酶,一般选择限制酶的识别序列是离质粒上的启动子最近的切割位点的酶。

3.为了避免质粒的自身环化,可以选择双酶切。

下一篇:h什么mm什么作用(mmh是什么单位) 上一篇:b1和b12维生素的副作用(b12和b1维生素的作用及功能及副作用)